103326: [Atcoder]ABC332 G - Not Too Many Balls
Description
Score : $625$ points
Problem Statement
There are several balls. Each ball is one of the colors $1$, $2$, $\ldots$, $N$, and for each $i = 1, 2, \ldots, N$, there are $A_i$ balls of color $i$.
Additionally, there are $M$ boxes. For each $j = 1, 2, \ldots, M$, the $j$-th box can hold up to $B_j$ balls in total.
Here, for all pairs of integers $(i, j)$ satisfying $1 \leq i \leq N$ and $1 \leq j \leq M$, the $j$-th box may hold at most $(i \times j)$ balls of color $i$.
Print the maximum total number of balls that the $M$ boxes can hold.
Constraints
- All input values are integers.
- $1 \leq N \leq 500$
- $1 \leq M \leq 5 \times 10^5$
- $0 \leq A_i, B_i \leq 10^{12}$
Input
The input is given from Standard Input in the following format:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$ $B_1$ $B_2$ $\ldots$ $B_M$
Output
Print the answer.
Sample Input 1
2 3 8 10 4 3 8
Sample Output 1
14
You can do as follows to put a total of $14$ balls into the boxes while satisfying the conditions in the problem statement.
- For balls of color $1$, put one into the first box, one into the second box, and three into the third box.
- For balls of color $2$, put two into the first box, two into the second box, and five into the third box.
Sample Input 2
1 1 1000000000000 0
Sample Output 2
0
Sample Input 3
10 12 59 168 130 414 187 236 330 422 31 407 495 218 351 105 351 414 198 230 345 297 489 212
Sample Output 3
2270
Input
Output
问题描述
有一些球。 每个球都有颜色$1$、$2$、$\ldots$、$N$,对于每个$i = 1, 2, \ldots, N$,有$A_i$个颜色为$i$的球。
另外,有$M$个盒子。 对于每个$j = 1, 2, \ldots, M$,第$j$个盒子最多可以容纳$B_j$个球。
在这里,对于所有满足$1 \leq i \leq N$和$1 \leq j \leq M$的整数对$(i, j)$, 第$j$个盒子最多可以容纳$(i \times j)$个颜色为$i$的球。
输出$M$个盒子最多可以容纳的球的总数。
限制条件
- 所有输入值都是整数。
- $1 \leq N \leq 500$
- $1 \leq M \leq 5 \times 10^5$
- $0 \leq A_i, B_i \leq 10^{12}$
输入
输入从标准输入以以下格式给出:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$ $B_1$ $B_2$ $\ldots$ $B_M$
输出
输出答案。
样例输入1
2 3 8 10 4 3 8
样例输出1
14
你可以在满足问题描述中的条件的情况下,将总共$14$个球放入盒子中。
- 对于颜色为$1$的球,将一个放入第一个盒子,一个放入第二个盒子,三个放入第三个盒子。
- 对于颜色为$2$的球,将两个放入第一个盒子,两个放入第二个盒子,五个放入第三个盒子。
样例输入2
1 1 1000000000000 0
样例输出2
0
样例输入3
10 12 59 168 130 414 187 236 330 422 31 407 495 218 351 105 351 414 198 230 345 297 489 212
样例输出3
2270