103356: [Atcoder]ABC335 G - Discrete Logarithm Problems

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

You are given $N$ integers $A_1,\ldots,A_N$ and a prime number $P$. Find the number of pairs of integers $(i,j)$ that satisfy both of the following conditions:

  • $1 \leq i,j \leq N$;
  • There is a positive integer $k$ such that $A_i^k \equiv A_j \mod P$.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i < P$
  • $2 \leq P \leq 10^{13}$
  • $P$ is prime.
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $P$
$A_1$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

3 13
2 3 5

Sample Output 1

5

Five pairs satisfy the conditions: $(1,1),(1,2),(1,3),(2,2),(3,3)$.

For example, for the pair $(1,3)$, if we take $k=9$, then $A_1^9 = 512 \equiv 5 = A_3 \mod 13$.


Sample Input 2

5 2
1 1 1 1 1

Sample Output 2

25

Sample Input 3

10 9999999999971
141592653589 793238462643 383279502884 197169399375 105820974944 592307816406 286208998628 34825342117 67982148086 513282306647

Sample Output 3

63

Input

Output

分数:600分

问题描述

给你$N$个整数$A_1,\ldots,A_N$和一个素数$P$。找出满足以下两个条件的整数对$(i,j)$的数量:

  • $1 \leq i,j \leq N$;
  • 存在正整数$k$,使得$A_i^k \equiv A_j \mod P$。

限制条件

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i < P$
  • $2 \leq P \leq 10^{13}$
  • $P$是素数。
  • 所有输入值都是整数。

输入

输入从标准输入以以下格式给出:

$N$ $P$
$A_1$ $\ldots$ $A_N$

输出

打印答案。


样例输入1

3 13
2 3 5

样例输出1

5

有5对满足条件:$(1,1),(1,2),(1,3),(2,2),(3,3)$。

例如,对于对$(1,3)$,如果我们取$k=9$,那么$A_1^9 = 512 \equiv 5 = A_3 \mod 13$。


样例输入2

5 2
1 1 1 1 1

样例输出2

25

样例输入3

10 9999999999971
141592653589 793238462643 383279502884 197169399375 105820974944 592307816406 286208998628 34825342117 67982148086 513282306647

样例输出3

63

加入题单

上一题 下一题 算法标签: