103424: [Atcoder]ABC342 E - Last Train
Description
Score: $450$ points
Problem Statement
In the country of AtCoder, there are $N$ stations: station $1$, station $2$, $\ldots$, station $N$.
You are given $M$ pieces of information about trains in the country. The $i$-th piece of information $(1\leq i\leq M)$ is represented by a tuple of six positive integers $(l _ i,d _ i,k _ i,c _ i,A _ i,B _ i)$, which corresponds to the following information:
- For each $t=l _ i,l _ i+d _ i,l _ i+2d _ i,\ldots,l _ i+(k _ i-1)d _ i$, there is a train as follows:
- The train departs from station $A _ i$ at time $t$ and arrives at station $B _ i$ at time $t+c _ i$.
No trains exist other than those described by this information, and it is impossible to move from one station to another by any means other than by train.
Also, assume that the time required for transfers is negligible.
Let $f(S)$ be the latest time at which one can arrive at station $N$ from station $S$.
More precisely, $f(S)$ is defined as the maximum value of $t$ for which there is a sequence of tuples of four integers $\big((t _ i,c _ i,A _ i,B _ i)\big) _ {i=1,2,\ldots,k}$ that satisfies all of the following conditions:
- $t\leq t _ 1$
- $A _ 1=S,B _ k=N$
- $B _ i=A _ {i+1}$ for all $1\leq i\lt k$,
- For all $1\leq i\leq k$, there is a train that departs from station $A _ i$ at time $t _ i$ and arrives at station $B _ i$ at time $t _ i+c _ i$.
- $t _ i+c _ i\leq t _ {i+1}$ for all $1\leq i\lt k$.
If no such $t$ exists, set $f(S)=-\infty$.
Find $f(1),f(2),\ldots,f(N-1)$.
Constraints
- $2\leq N\leq2\times10 ^ 5$
- $1\leq M\leq2\times10 ^ 5$
- $1\leq l _ i,d _ i,k _ i,c _ i\leq10 ^ 9\ (1\leq i\leq M)$
- $1\leq A _ i,B _ i\leq N\ (1\leq i\leq M)$
- $A _ i\neq B _ i\ (1\leq i\leq M)$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $l _ 1$ $d _ 1$ $k _ 1$ $c _ 1$ $A _ 1$ $B _ 1$ $l _ 2$ $d _ 2$ $k _ 2$ $c _ 2$ $A _ 2$ $B _ 2$ $\vdots$ $l _ M$ $d _ M$ $k _ M$ $c _ M$ $A _ M$ $B _ M$
Output
Print $N-1$ lines.
The $k$-th line should contain $f(k)$ if $f(k)\neq-\infty$, and Unreachable
if $f(k)=-\infty$.
Sample Input 1
6 7 10 5 10 3 1 3 13 5 10 2 3 4 15 5 10 7 4 6 3 10 2 4 2 5 7 10 2 3 5 6 5 3 18 2 2 3 6 3 20 4 2 1
Sample Output 1
55 56 58 60 17
The following diagram shows the trains running in the country (information about arrival and departure times is omitted).
Consider the latest time at which one can arrive at station $6$ from station $2$. As shown in the following diagram, one can arrive at station $6$ by departing from station $2$ at time $56$ and moving as station $2\rightarrow$ station $3\rightarrow$ station $4\rightarrow$ station $6$.
It is impossible to depart from station $2$ after time $56$ and arrive at station $6$, so $f(2)=56$.
Sample Input 2
5 5 1000000000 1000000000 1000000000 1000000000 1 5 5 9 2 6 2 3 10 4 1 6 2 3 1 1 1 1 3 5 3 1 4 1 5 1
Sample Output 2
1000000000000000000 Unreachable 1 Unreachable
There is a train that departs from station $1$ at time $10 ^ {18}$ and arrives at station $5$ at time $10 ^ {18}+10 ^ 9$. There are no trains departing from station $1$ after that time, so $f(1)=10 ^ {18}$. As seen here, the answer may not fit within a $32\operatorname{bit}$ integer.
Also, both the second and third pieces of information guarantee that there is a train that departs from station $2$ at time $14$ and arrives at station $3$ at time $20$. As seen here, some trains may appear in multiple pieces of information.
Sample Input 3
16 20 4018 9698 2850 3026 8 11 2310 7571 7732 1862 13 14 2440 2121 20 1849 11 16 2560 5115 190 3655 5 16 1936 6664 39 8822 4 16 7597 8325 20 7576 12 5 5396 1088 540 7765 15 1 3226 88 6988 2504 13 5 1838 7490 63 4098 8 3 1456 5042 4 2815 14 7 3762 6803 5054 6994 10 9 9526 6001 61 8025 7 8 5176 6747 107 3403 1 5 2014 5533 2031 8127 8 11 8102 5878 58 9548 9 10 3788 174 3088 5950 3 13 7778 5389 100 9003 10 15 556 9425 9458 109 3 11 5725 7937 10 3282 2 9 6951 7211 8590 1994 15 12
Sample Output 3
720358 77158 540926 255168 969295 Unreachable 369586 466218 343148 541289 42739 165772 618082 16582 591828
Input
Output
得分:$450$分
问题描述
在AtCoder国,有$N$个车站:第1个车站,第2个车站,$\ldots$,第$N$个车站。
你得到了有关该国火车的$M$条信息。第$i$条信息$(1\leq i\leq M)$由六个正整数$(l _ i,d _ i,k _ i,c _ i,A _ i,B _ i)$表示,对应以下信息:
- 对于每个$t=l _ i,l _ i+d _ i,l _ i+2d _ i,\ldots,l _ i+(k _ i-1)d _ i$,有一个火车如下:
- 该火车在时间$t$从车站$A _ i$出发,于时间$t+c _ i$到达车站$B _ i$。
除了这些信息描述的火车外,不存在其他火车,而且除了火车以外,不可能通过任何方式从一个车站转移到另一个车站。
此外,假设换乘所需的时间可以忽略不计。
令$f(S)$为从车站$S$到达第$N$个车站的最晚时间。
更准确地说,$f(S)$定义为满足以下条件的四元组序列$\big((t _ i,c _ i,A _ i,B _ i)\big) _ {i=1,2,\ldots,k}$的最大值$t$:
- $t\leq t _ 1$
- $A _ 1=S,B _ k=N$
- $B _ i=A _ {i+1}$ 对于所有$1\leq i\lt k$,
- 对于所有$1\leq i\leq k$,有一个火车从车站$A _ i$在时间$t _ i$出发,于时间$t _ i+c _ i$到达车站$B _ i$。
- $t _ i+c _ i\leq t _ {i+1}$ 对于所有$1\leq i\lt k$。
如果不存在这样的$t$,则设$f(S)=-\infty$。
求$f(1),f(2),\ldots,f(N-1)$。
约束
- $2\leq N\leq2\times10 ^ 5$
- $1\leq M\leq2\times10 ^ 5$
- $1\leq l _ i,d _ i,k _ i,c _ i\leq10 ^ 9\ (1\leq i\leq M)$
- $1\leq A _ i,B _ i\leq N\ (1\leq i\leq M)$
- $A _ i\neq B _ i\ (1\leq i\leq M)$
- 所有输入值都是整数。
输入
输入通过标准输入给出,如下所示:
$N$ $M$ $l _ 1$ $d _ 1$ $k _ 1$ $c _ 1$ $A _ 1$ $B _ 1$ $l _ 2$ $d _ 2$ $k _ 2$ $c _ 2$ $A _ 2$ $B _ 2$ $\vdots$ $l _ M$ $d _ M$ $k _ M$ $c _ M$ $A _ M$ $B _ M$
输出
打印$N-1$行。
如果$f(k)\neq-\infty$,则第$k$行应包含$f(k)$,如果$f(k)=-\infty$,则打印Unreachable
。
样例输入1
6 7 10 5 10 3 1 3 13 5 10 2 3 4 15 5 10 7 4 6 3 10 2 4 2 5 7 10 2 3 5 6 5 3 18 2 2 3 6 3 20 4 2 1
样例输出1
55 56 58 60 17
下图显示了该国运行的火车(关于到达和出发时间的信息被省略)。
考虑从车站$2$到达车站$6$的最晚时间。 如图所示,可以从车站$2$在时间$56$出发,通过车站$2\rightarrow$车站$3\rightarrow$车站$4\rightarrow$车站$6$到达车站$6$。
在时间$56$之后从车站$2$出发无法到达车站$6$,所以$f(2)=56$。
样例输入2
5 5 1000000000 1000000000 1000000000 1000000000 1 5 5 9 2 6 2 3 10 4 1 6 2 3 1 1 1 1 3 5 3 1 4 1 5 1
样例输出2
1000000000000000000 Unreachable 1 Unreachable
有一个火车在时间$10 ^ {18}$从车站$1$出发,在时间$10 ^ {18}+10 ^ 9$到达车站$5$。在那之后没有从车站$1$出发的火车,所以$f(1)=10 ^ {18}$。 如这里所示,答案可能不适用于一个$32\operatorname{bit}$整数。
此外,第二条和第三条信息都保证了一个火车在时间$14$从车站$2$出发,在时间$20$到达车站$3$。 如这里所示,有些火车可能在多条信息中出现。
样例输入3
16 20 4018 9698 2850 3026 8 11 2310 7571 7732 1862 13 14 2440 2121 20 1849 11 16 2560 5115 190 3655 5 16 1936 6664 39 8822 4 16 7597 8325 20 7576 12 5 5396 1088 540 7765 15 1 3226 88 6988 2504 13 5 1838 7490 63 4098 8 3 1456 5042 4 2815 14 7 3762 6803 5054 6994 10 9 9