103455: [Atcoder]ABC345 F - Many Lamps

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:3 Solved:0

Description

Score: $550$ points

Problem Statement

There is a simple graph with $N$ vertices numbered $1$ to $N$ and $M$ edges numbered $1$ to $M$. Edge $i$ connects vertices $u_i$ and $v_i$.
Each vertex has one lamp on it. Initially, all the lamps are off.

Determine whether it is possible to turn exactly $K$ lamps on by performing the following operation between $0$ and $M$ times, inclusive.

  • Choose one edge. Let $u$ and $v$ be the endpoints of the edge. Toggle the states of the lamps on $u$ and $v$. That is, if the lamp is on, turn it off, and vice versa.

If it is possible to turn exactly $K$ lamps on, print a sequence of operations that achieves this state.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $0 \leq M \leq \min\left( 2 \times 10^5, \frac{N(N-1)}{2} \right)$
  • $0 \leq K \leq N$
  • $1 \leq u_i < v_i \leq N$
  • The given graph is simple.
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$ $K$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_M$ $v_M$

Output

If it is impossible to turn exactly $K$ lamps on, print No.
Otherwise, first print Yes, and then print a sequence of operations in the following format:

$X$
$e_1$ $e_2$ $\dots$ $e_X$

Here, $X$ is the number of operations, and $e_i$ is the number of the edge chosen in the $i$-th operation. These must satisfy the following:

  • $0 \leq X \leq M$
  • $1 \leq e_i \leq M$

If multiple sequences of operations satisfy the conditions, any of them will be considered correct.


Sample Input 1

5 5 4
1 2
1 3
2 4
3 5
1 5

Sample Output 1

Yes
3
3 4 5

If we operate according to the sample output, it will go as follows:

  • Choose edge $3$. Turn on the lamps on vertex $2$ and vertex $4$.
  • Choose edge $4$. Turn on the lamps on vertex $3$ and vertex $5$.
  • Choose edge $5$. Turn on the lamp on vertex $1$ and turn off the lamp on vertex $5$.

After completing all operations, the lamps on vertices $1$, $2$, $3$, and $4$ are on. Therefore, this sequence of operations satisfies the conditions.

Other possible sequences of operations that satisfy the conditions include $X = 4, (e_1,e_2,e_3,e_4) = (3,4,3,1)$. (It is allowed to choose the same edge more than once.)


Sample Input 2

5 5 5
1 2
1 3
2 4
3 5
1 5

Sample Output 2

No

Sample Input 3

10 10 6
2 5
2 6
3 5
3 8
4 6
4 8
5 9
6 7
6 10
7 9

Sample Output 3

Yes
3
10 9 6

Input

Output

得分:550分

问题描述

有一个简单的图,有N个顶点,编号为1到N,有M条边,编号为1到M。第i条边连接顶点u_i和v_i。

每个顶点上有一个灯。最初,所有的灯都是关着的。

确定是否可以通过执行以下操作0到M次(包括0和M次),使恰好K个灯亮着。

  • 选择一条边。设u和v为该边的端点。切换u和v上灯的状态。也就是说,如果灯亮着,就把它关掉,反之亦然。

如果可能使恰好K个灯亮着,打印出实现这种状态的运算序列。

约束

  • 1≤N≤2×10^5
  • 0≤M≤min(2×10^5,N(N-1)/2)
  • 0≤K≤N
  • 1≤u_i<v_i≤N
  • 给定的图是简单的。
  • 所有输入值都是整数。

输入

输入从标准输入按以下格式给出:

N M K
u_1 v_1
u_2 v_2
$\vdots$
u_M v_M

输出

如果不可能使恰好K个灯亮着,打印No
否则,首先打印Yes,然后按以下格式打印一个运算序列:

X
e_1 e_2 $\dots$ e_X

其中,X是操作的数量,e_i是第i次操作中选择的边的编号。它们必须满足以下条件:

  • 0≤X≤M
  • 1≤e_i≤M

如果多个操作序列满足条件,那么任何操作序列都将被认为是正确的。


样例输入1

5 5 4
1 2
1 3
2 4
3 5
1 5

样例输出1

Yes
3
3 4 5

如果我们按照样例输出进行操作,将会是这样的:

  • 选择边3。将顶点2和顶点4上的灯打开。
  • 选择边4。将顶点3和顶点5上的灯打开。
  • 选择边5。将顶点1上的灯打开,将顶点5上的灯关闭。

完成所有操作后,顶点1、2、3和4上的灯亮着。因此,这个操作序列满足条件。

满足条件的其他可能的操作序列包括X = 4,(e_1,e_2,e_3,e_4) = (3,4,3,1)。 (允许选择相同的边多次。)


样例输入2

5 5 5
1 2
1 3
2 4
3 5
1 5

样例输出2

No

样例输入3

10 10 6
2 5
2 6
3 5
3 8
4 6
4 8
5 9
6 7
6 10
7 9

样例输出3

Yes
3
10 9 6

加入题单

上一题 下一题 算法标签: