103461: [Atcoder]ABC346 B - Piano
Description
Score: $200$ points
Problem Statement
There is an infinitely long piano keyboard. Is there a continuous segment within this keyboard that consists of $W$ white keys and $B$ black keys?
Let $S$ be the string formed by infinitely repeating the string wbwbwwbwbwbw
.
Is there a substring of $S$ that consists of $W$ occurrences of w
and $B$ occurrences of b
?
What is a substring of $S$?
A substring of $S$ is a string that can be formed by concatenating the $l$-th, $(l+1)$-th, $\dots$, $r$-th characters of $S$ in this order for some two positive integers $l$ and $r$ $(l\leq r)$.Constraints
- $W$ and $B$ are integers.
- $0\leq W,B \leq 100$
- $W+B \geq 1$
Input
The input is given from Standard Input in the following format:
$W$ $B$
Output
If there is a substring of $S$ that consists of $W$ occurrences of w
and $B$ occurrences of b
, print Yes
; otherwise, print No
.
Sample Input 1
3 2
Sample Output 1
Yes
The first $15$ characters of $S$ are wbwbwwbwbwbwwbw
. You can take the $11$-th through $15$-th characters to form the string bwwbw
, which is a substring consisting of three occurrences of w
and two occurrences of b
.
Sample Input 2
3 0
Sample Output 2
No
The only string consisting of three occurrences of w
and zero occurrences of b
is www
, which is not a substring of $S$.
Sample Input 3
92 66
Sample Output 3
Yes
Input
Output
问题描述
有一个无限长的钢琴键盘。 这个键盘中是否存在一个连续的片段,由$W$个白键和$B$个黑键组成?
令$S$是由无限重复字符串wbwbwwbwbwbw
形成的字符串。
是否存在$S$的一个子串,由$W$个w
和$B$个b
组成?
什么是$S$的子串?
$S$的子串是可以通过将$S$中的第$l$个、第$(l+1)$个、$\dots$、第$r$个字符按顺序连接起来形成的字符串,其中$l$和$r$是两个正整数,且$l\leq r$。约束条件
- $W$和$B$是整数。
- $0\leq W,B \leq 100$
- $W+B \geq 1$
输入
输入通过标准输入给出,如下所示:
$W$ $B$
输出
如果存在$S$的一个子串,由$W$个w
和$B$个b
组成,则打印Yes
;否则,打印No
。
样例输入1
3 2
样例输出1
Yes
$S$的前15个字符为wbwbwwbwbwbwwbw
。你可以取第11个到第15个字符形成字符串bwwbw
,这是一个由三个w
和两个b
组成的子串。
样例输入2
3 0
样例输出2
No
由三个w
和零个b
组成的唯一字符串是www
,它不是$S$的子串。
样例输入3
92 66
样例输出3
Yes