103485: [Atcoder]ABC348 F - Oddly Similar
Description
Score: $550$ points
Problem Statement
There are $N$ sequences of length $M$, denoted as $A_1, A_2, \ldots, A_N$. The $i$-th sequence is represented by $M$ integers $A_{i,1}, A_{i,2}, \ldots, A_{i,M}$.
Two sequences $X$ and $Y$ of length $M$ are said to be similar if and only if the number of indices $i (1 \leq i \leq M)$ such that $X_i = Y_i$ is odd.
Find the number of pairs of integers $(i,j)$ satisfying $1 \leq i < j \leq N$ such that $A_i$ and $A_j$ are similar.
Constraints
- $1 \leq N \leq 2000$
- $1 \leq M \leq 2000$
- $1 \leq A_{i,j} \leq 999$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $A_{1,1}$ $A_{1,2}$ $\ldots$ $A_{1,M}$ $A_{2,1}$ $A_{2,2}$ $\ldots$ $A_{2,M}$ $\vdots$ $A_{N,1}$ $A_{N,2}$ $\ldots$ $A_{N,M}$
Output
Print the answer as an integer.
Sample Input 1
3 3 1 2 3 1 3 4 2 3 4
Sample Output 1
1
The pair $(i,j) = (1,2)$ satisfies the condition because there is only one index $k$ such that $A_{1,k} = A_{2,k}$, which is $k=1$.
The pairs $(i,j) = (1,3), (2,3)$ do not satisfy the condition, making $(1,2)$ the only pair that does.
Sample Input 2
6 5 8 27 27 10 24 27 8 2 4 5 15 27 26 17 24 27 27 27 27 27 27 7 22 11 27 19 27 27 27 27
Sample Output 2
5
Input
Output
问题描述
有$N$个长度为$M$的序列,分别表示为$A_1, A_2, \ldots, A_N$。第$i$个序列由$M$个整数$A_{i,1}, A_{i,2}, \ldots, A_{i,M}$表示。
长度为$M$的两个序列$X$和$Y$被认为是相似的,当且仅当满足$X_i = Y_i$的索引$i (1 \leq i \leq M)$的数量为奇数。
找出满足$1 \leq i < j \leq N$的整数对$(i,j)$,使得$A_i$和$A_j$相似的对数。
限制条件
- $1 \leq N \leq 2000$
- $1 \leq M \leq 2000$
- $1 \leq A_{i,j} \leq 999$
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $M$ $A_{1,1}$ $A_{1,2}$ $\ldots$ $A_{1,M}$ $A_{2,1}$ $A_{2,2}$ $\ldots$ $A_{2,M}$ $\vdots$ $A_{N,1}$ $A_{N,2}$ $\ldots$ $A_{N,M}$
输出
打印一个整数答案。
样例输入1
3 3 1 2 3 1 3 4 2 3 4
样例输出1
1
对$(i,j) = (1,2)$满足条件,因为只有一个索引$k$使得$A_{1,k} = A_{2,k}$,即$k=1$。
对$(i,j) = (1,3), (2,3)$不满足条件,因此$(1,2)$是唯一满足条件的对。
样例输入2
6 5 8 27 27 10 24 27 8 2 4 5 15 27 26 17 24 27 27 27 27 27 27 7 22 11 27 19 27 27 27 27
样例输出2
5