103533: [Atcoder]ABC353 D - Another Sigma Problem

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:16 Solved:0

Description

Score: $400$ points

Problem Statement

For positive integers $x$ and $y$, define $f(x, y)$ as follows:

  • Interpret the decimal representations of $x$ and $y$ as strings and concatenate them in this order to obtain a string $z$. The value of $f(x, y)$ is the value of $z$ when interpreted as a decimal integer.

For example, $f(3, 14) = 314$ and $f(100, 1) = 1001$.

You are given a sequence of positive integers $A = (A_1, \ldots, A_N)$ of length $N$. Find the value of the following expression modulo $998244353$:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(A_i,A_j)$.


Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq 10^9$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$
$A_1$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

3
3 14 15

Sample Output 1

2044
  • $f(A_1, A_2) = 314$
  • $f(A_1, A_3) = 315$
  • $f(A_2, A_3) = 1415$

Thus, the answer is $f(A_1, A_2) + f(A_1, A_3) + f(A_2, A_3) = 2044$.


Sample Input 2

5
1001 5 1000000 1000000000 100000

Sample Output 2

625549048

Be sure to calculate the value modulo $998244353$.

Output

得分:400分 ---

问题描述

对于正整数$x$和$y$,定义$f(x, y)$如下:

  • 将$x$和$y$的十进制表示作为字符串按顺序连接,得到字符串$z$。$f(x, y)$的值是将$z$解释为十进制整数的值。

例如,$f(3, 14) = 314$和$f(100, 1) = 1001$。

给你一个长度为$N$的正整数序列$A = (A_1, \ldots, A_N)$。找出以下表达式对$998244353$取模的结果:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(A_i,A_j)$。


限制条件

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq 10^9$
  • 所有输入值都是整数。

输入

标准输入以以下格式提供输入:

$N$
$A_1$ $\ldots$ $A_N$

输出

打印答案。


样例输入1

3
3 14 15

样例输出1

2044
  • $f(A_1, A_2) = 314$
  • $f(A_1, A_3) = 315$
  • $f(A_2, A_3) = 1415$

因此,答案是$f(A_1, A_2) + f(A_1, A_3) + f(A_2, A_3) = 2044$。


样例输入2

5
1001 5 1000000 1000000000 100000

样例输出2

625549048

请确保对$998244353$取模计算结果。

加入题单

上一题 下一题 算法标签: