103535: [Atcoder]ABC353 F - Tile Distance
Description
Score: $550$ points
Problem Statement
Tiles are laid out on a coordinate plane. There are two types of tiles: small tiles of size $1\times1$ and large tiles of size $K\times K$, laid out according to the following rules:
- For each pair of integers $(i,j)$, the square $\lbrace(x,y)\mid i\leq x\leq i+1\wedge j\leq y\leq j+1\rbrace$ is contained within either one small tile or one large tile.
- If $\left\lfloor\dfrac iK\right\rfloor+\left\lfloor\dfrac jK\right\rfloor$ is even, it is contained within a small tile.
- Otherwise, it is contained within a large tile.
Tiles include their boundaries, and no two different tiles have a positive area of intersection.
For example, when $K=3$, tiles are laid out as follows:
Takahashi starts at the point $(S_x+0.5,S_y+0.5)$ on the coordinate plane.
He can repeat the following movement any number of times:
- Choose a direction (up, down, left, or right) and a positive integer $n$. Move $n$ units in that direction.
Each time he crosses from one tile to another, he must pay a toll of $1$.
Determine the minimum toll Takahashi must pay to reach the point $(T_x+0.5,T_y+0.5)$.
Constraints
- $1\leq K\leq10^{16}$
- $0\leq S_x\leq2\times10^{16}$
- $0\leq S_y\leq2\times10^{16}$
- $0\leq T_x\leq2\times10^{16}$
- $0\leq T_y\leq2\times10^{16}$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$K$ $S_x$ $S_y$ $T_x$ $T_y$
Output
Print the minimum toll Takahashi must pay.
Sample Input 1
3 7 2 1 6
Sample Output 1
5
For example, he can move as follows, paying a toll of $5$.
- Move up by $3$. Pay a toll of $1$.
- Move left by $2$. Pay a toll of $1$.
- Move up by $1$. Pay a toll of $1$.
- Move left by $4$. Pay a toll of $2$.
The toll paid cannot be $4$ or less, so print 5
.
Sample Input 2
1 41 42 13 56
Sample Output 2
42
When he moves the shortest distance, he will always pay a toll of $42$.
The toll paid cannot be $41$ or less, so print 42
.
Sample Input 3
100 100 99 199 1
Sample Output 3
0
There are cases where no toll needs to be paid.
Sample Input 4
96929423 5105216413055191 10822465733465225 1543712011036057 14412421458305526
Sample Output 4
79154049
Output
问题描述
在坐标平面上铺有瓷砖。有两种类型的瓷砖:大小为$1\times1$的小瓷砖和大小为$K\times K$的大瓷砖,按照以下规则铺设:
- 对于每一对整数$(i,j)$,正方形$\lbrace(x,y)\mid i\leq x\leq i+1\wedge j\leq y\leq j+1\rbrace$包含在一个小瓷砖或一个大瓷砖内:
- 如果$\left\lfloor\dfrac iK\right\rfloor+\left\lfloor\dfrac jK\right\rfloor$是偶数,则包含在一个小瓷砖内。
- 否则,包含在一个大瓷砖内。
瓷砖包括其边界,且没有两个不同的瓷砖有正交区域。
例如,当$K=3$时,瓷砖的布局如下:
高桥在坐标平面上的点$(S_x+0.5,S_y+0.5)$处开始。
他可以重复以下移动任意次数:
- 选择一个方向(上、下、左、右)和一个正整数$n$。沿该方向移动$n$个单位。
每次他从一个瓷砖移动到另一个瓷砖,他必须支付1元的通行费。
确定高桥到达点$(T_x+0.5,T_y+0.5)$所需的最低通行费。
限制条件
- $1\leq K\leq10^{16}$
- $0\leq S_x\leq2\times10^{16}$
- $0\leq S_y\leq2\times10^{16}$
- $0\leq T_x\leq2\times10^{16}$
- $0\leq T_y\leq2\times10^{16}$
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$K$ $S_x$ $S_y$ $T_x$ $T_y$
输出
打印高桥必须支付的最低通行费。
样例输入1
3 7 2 1 6
样例输出1
5
例如,他可以按照以下方式移动,支付5元通行费。
- 向上移动3个单位。支付1元通行费。
- 向左移动2个单位。支付1元通行费。
- 向上移动1个单位。支付1元通行费。
- 向左移动4个单位。支付2元通行费。
支付的通行费不能少于4元,所以打印5
。
样例输入2
1 41 42 13 56
样例输出2
42
当他沿着最短距离移动时,他将始终支付42元通行费。
支付的通行费不能少于41元,所以打印42
。
样例输入3
100 100 99 199 1
样例输出3
0
有些情况不需要支付通行费。
样例输入4
96929423 5105216413055191 10822465733465225 1543712011036057 14412421458305526
样例输出4
79154049