103553: [Atcoder]ABC355 D - Intersecting Intervals
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:11
Solved:0
Description
Score : $400$ points
Problem Statement
You are given $N$ intervals of real numbers. The $i$-th $(1 \leq i \leq N)$ interval is $[l_i, r_i]$. Find the number of pairs $(i, j)\,(1 \leq i < j \leq N)$ such that the $i$-th and $j$-th intervals intersect.
Constraints
- $2 \leq N \leq 5 \times 10^5$
- $0 \leq l_i < r_i \leq 10^9$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $l_1$ $r_1$ $l_2$ $r_2$ $\vdots$ $l_N$ $r_N$
Output
Print the answer.
Sample Input 1
3 1 5 7 8 3 7
Sample Output 1
2
The given intervals are $[1,5], [7,8], [3,7]$. Among these, the $1$-st and $3$-rd intervals intersect, as well as the $2$-nd and $3$-rd intervals, so the answer is $2$.
Sample Input 2
3 3 4 2 5 1 6
Sample Output 2
3
Sample Input 3
2 1 2 3 4
Sample Output 3
0
Output
分数:$400$ 分
问题描述
给你$N$个实数区间。第$i$个区间($1 \leq i \leq N$)是$[l_i, r_i]$。找出所有满足第$i$个和第$j$个区间相交的对$(i, j)\,(1 \leq i < j \leq N)$的数量。
限制条件
- $2 \leq N \leq 5 \times 10^5$
- $0 \leq l_i < r_i \leq 10^9$
- 所有输入值都是整数。
输入
标准输入按照以下格式给出:
$N$ $l_1$ $r_1$ $l_2$ $r_2$ $\vdots$ $l_N$ $r_N$
输出
打印答案。
样例输入1
3 1 5 7 8 3 7
样例输出1
2
给定的区间是$[1,5], [7,8], [3,7]$。其中,第$1$个和第$3$个区间相交,第$2$个和第$3$个区间也相交,所以答案是$2$。
样例输入2
3 3 4 2 5 1 6
样例输出2
3
样例输入3
2 1 2 3 4
样例输出3
0