103602: [Atcoder]ABC360 C - Move It
Description
Score : $250$ points
Problem Statement
There are $N$ boxes numbered $1$ to $N$ and $N$ items numbered $1$ to $N$. Item $i$ $(1 \leq i \leq N)$ is in box $A_i$ and has a weight of $W_i$.
You can repeatedly perform the operation of choosing an item and moving it to another box zero or more times. If the weight of the item being moved is $w$, the cost of the operation is $w$.
Find the minimum total cost required to make each box contain exactly one item.
Constraints
- $ 1 \leq N \leq 10^{5}$
- $ 1 \leq A_i \leq N$ $(1 \leq i \leq N)$
- $ 1 \leq W_i \leq 10^{4}$ $(1 \leq i \leq N)$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\ldots$ $A_N$ $W_1$ $W_2$ $\ldots$ $W_N$
Output
Print the minimum total cost required to make each box contain exactly one item.
Sample Input 1
5 2 2 3 3 5 33 40 2 12 16
Sample Output 1
35
With the following two moves, you can make each box contain exactly one item:
- Move item $1$ from box $2$ to box $1$. The cost is $33$.
- Move item $3$ from box $3$ to box $4$. The cost is $2$.
The total cost of these two moves is $35$. It is impossible to make each box contain exactly one item with a cost less than $35$, so print $35$.
Sample Input 2
12 3 6 7 4 12 4 8 11 11 1 8 11 3925 9785 9752 3587 4013 1117 3937 7045 6437 6208 3391 6309
Sample Output 2
17254
Output
问题陈述
有N个盒子,编号为1到N,以及N个物品,编号为1到N。物品i(1≤i≤N)在盒子A_i中,其重量为W_i。
你可以重复执行选择一个物品并将其移动到另一个盒子的操作,次数不限。如果被移动的物品的重量是w,那么该操作的成本就是w。
找出使每个盒子恰好包含一个物品所需的最小总成本。
约束条件
- $ 1 \leq N \leq 10^{5}$
- $ 1 \leq A_i \leq N$($1 \leq i \leq N$)
- $ 1 \leq W_i \leq 10^{4}$($1 \leq i \leq N$)
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $A_1$ $A_2$ $\ldots$ $A_N$ $W_1$ $W_2$ $\ldots$ $W_N$
输出
打印使每个盒子恰好包含一个物品所需的最小总成本。
示例输入1
5 2 2 3 3 5 33 40 2 12 16
示例输出1
35
通过以下两步操作,你可以使每个盒子恰好包含一个物品:
- 将物品1从盒子2移动到盒子1。成本是33。
- 将物品3从盒子3移动到盒子4。成本是2。
这两个操作的总成本是35。无法以低于35的成本使每个盒子恰好包含一个物品,因此打印35。
示例输入2
12 3 6 7 4 12 4 8 11 11 1 8 11 3925 9785 9752 3587 4013 1117 3937 7045 6437 6208 3391 6309
示例输出2
17254