103615: [Atcoder]ABC361 F - x = a^b
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:11
Solved:0
Description
Score : $500$ points
Problem Statement
How many integers $x$ between $1$ and $N$, inclusive, can be expressed as $x = a^b$ using some positive integer $a$ and a positive integer $b$ not less than $2$?
Constraints
- All input values are integers.
- $1 \le N \le 10^{18}$
Input
The input is given from Standard Input in the following format:
$N$
Output
Print the answer as an integer.
Sample Input 1
99
Sample Output 1
12
The integers that satisfy the conditions in the problem statement are $1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81$: there are $12$.
Sample Input 2
1000000000000000000
Sample Output 2
1001003332
Output
得分:500分
问题陈述
在1和N之间(包括1和N),有多少个整数x可以用某个正整数a和一个不低于2的正整数b表示为x = a^b?
约束条件
- 所有输入值都是整数。
- $1 \le N \le 10^{18}$
输入
输入从标准输入以以下格式给出:
$N$
输出
以整数形式打印答案。
示例输入1
99
示例输出1
12
满足问题陈述中条件的整数有$1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81$:共有12个。
示例输入2
1000000000000000000
示例输出2
1001003332