103655: [Atcoder]ABC365 F - Takahashi on Grid
Description
Score : $575$ points
Problem Statement
There are infinitely many cells on a plane. For every pair of integers $(x,y)$, there is a corresponding cell, which we will call cell $(x,y)$.
Each cell is either an empty cell or a wall cell.
You are given two sequences of positive integers of length $N$: $L=(L _ 1,L _ 2,\dotsc,L _ N)$ and $U=(U _ 1,U _ 2,\dotsc,U _ N)$.
Here, $L _ i$ and $U _ i$ satisfy $1\leq L _ i\leq U _ i\leq10 ^ 9$ for $i=1,2,\ldots,N$.
All cells $(x,y)\ (1\leq x\leq N,L _ x\leq y\leq U _ x)$ are empty cells, and all other cells are wall cells.
When Takahashi is at an empty cell $(x,y)$, he can perform one of the following actions.
- If cell $(x+1,y)$ is an empty cell, move to cell $(x+1,y)$.
- If cell $(x-1,y)$ is an empty cell, move to cell $(x-1,y)$.
- If cell $(x,y+1)$ is an empty cell, move to cell $(x,y+1)$.
- If cell $(x,y-1)$ is an empty cell, move to cell $(x,y-1)$.
It is guaranteed that he can travel between any two empty cells by repeating his actions.
Answer $Q$ queries in the following format.
For the $i$-th query $(1\leq i\leq Q)$, you are given a quadruple of integers $(s _ {x,i},s _ {y,i},t _ {x,i},t _ {y,i})$. Find the minimum number of actions required for Takahashi to move from cell $(s _ {x,i},s _ {y,i})$ to cell $(t _ {x,i},t _ {y,i})$. For each query, it is guaranteed that the given two cells are empty cells.
Constraints
- $1\leq N\leq2\times10 ^ 5$
- $1\leq L _ i\leq U _ i\leq10 ^ 9\ (1\leq i\leq N)$
- $\lbrack L _ i,U _ i\rbrack\cap\lbrack L _ {i+1},U _ {i+1}\rbrack\neq\emptyset\ (1\leq i\lt N)$
- $1\leq Q\leq2\times10 ^ 5$
- $1\leq s _ {x,i}\leq N$ and $L _ {s _ {x,i}}\leq s _ {y,i}\leq U _ {s _ {x,i}}\ (1\leq i\leq Q)$
- $1\leq t _ {x,i}\leq N$ and $L _ {t _ {x,i}}\leq t _ {y,i}\leq U _ {t _ {x,i}}\ (1\leq i\leq Q)$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $L _ 1$ $U _ 1$ $L _ 2$ $U _ 2$ $\vdots$ $L _ N$ $U _ N$ $Q$ $s _ {x,1}$ $s _ {y,1}$ $t _ {x,1}$ $t _ {y,1}$ $s _ {x,2}$ $s _ {y,2}$ $t _ {x,2}$ $t _ {y,2}$ $\vdots$ $s _ {x,Q}$ $s _ {y,Q}$ $t _ {x,Q}$ $t _ {y,Q}$
Output
Print $Q$ lines. The $i$-th line $(1\leq i\leq Q)$ should contain the answer to the $i$-th query.
Sample Input 1
7 1 5 3 3 1 3 1 1 1 4 2 4 3 5 3 1 4 6 3 1 4 1 1 7 5 1 5
Sample Output 1
10 3 14
The given cells are as follows.
For the first query, for example, Takahashi can move from cell $(1,4)$ to cell $(6,3)$ in ten actions as follows.
It is impossible to move from cell $(1,4)$ to cell $(6,3)$ in nine or fewer actions, so print $10$.
Sample Input 2
12 1 1000000000 1000000000 1000000000 1 1000000000 1 1 1 1000000000 1000000000 1000000000 1 1000000000 1 1 1 1000000000 1000000000 1000000000 1 1000000000 1 1 1 1 1 12 1
Sample Output 2
6000000005
Note that the output value may not fit in a $32$-bit integer.
Sample Input 3
10 1694 7483 3396 5566 2567 6970 1255 3799 2657 3195 3158 8007 3368 8266 1447 6359 5365 8614 3141 7245 15 3 3911 6 4694 7 5850 10 4641 1 5586 6 4808 2 3401 8 2676 3 3023 6 6923 8 4082 3 6531 6 3216 7 6282 8 5121 8 3459 8 4388 1 6339 6 6001 3 6771 10 5873 8 5780 1 6512 6 6832 8 5345 7 4975 10 4010 8 2355 7 5837 9 6279
Sample Output 3
2218 1212 4009 1077 3903 4228 3067 1662 4344 6385 95 6959 371 4367 444
Output
得分:575分
问题陈述
平面上有无限多个单元格。 对于每对整数$(x,y)$,都有一个对应的单元格,我们将其称为单元格$(x,y)$。
每个单元格要么是空单元格,要么是墙壁单元格。
给你两个长度为$N$的正整数序列$L=(L _ 1,L _ 2,\dotsc,L _ N)$和$U=(U _ 1,U _ 2,\dotsc,U _ N)$。
这里,$L _ i$和$U _ i$满足$1\leq L _ i\leq U _ i\leq10 ^ 9$对于$i=1,2,\ldots,N$。
所有单元格$(x,y)\ (1\leq x\leq N,L _ x\leq y\leq U _ x)$都是空单元格,所有其他单元格都是墙壁单元格。
当高桥在空单元格$(x,y)$时,他可以执行以下操作之一。
- 如果单元格$(x+1,y)$是空单元格,则移动到单元格$(x+1,y)$。
- 如果单元格$(x-1,y)$是空单元格,则移动到单元格$(x-1,y)$。
- 如果单元格$(x,y+1)$是空单元格,则移动到单元格$(x,y+1)$。
- 如果单元格$(x,y-1)$是空单元格,则移动到单元格$(x,y-1)$。
保证他可以通过重复他的操作在任意两个空单元格之间旅行。
以以下格式回答$Q$个查询。
对于第$i$个查询$(1\leq i\leq Q)$,给你一个由四个整数组成的四元组$(s _ {x,i},s _ {y,i},t _ {x,i},t _ {y,i})$。找出高桥从单元格$(s _ {x,i},s _ {y,i})$移动到单元格$(t _ {x,i},t _ {y,i})$所需的最小操作数。 对于每个查询,保证给定的两个单元格都是空单元格。
约束条件
- $1\leq N\leq2\times10 ^ 5$
- $1\leq L _ i\leq U _ i\leq10 ^ 9\ (1\leq i\leq N)$
- $\lbrack L _ i,U _ i\rbrack\cap\lbrack L _ {i+1},U _ {i+1}\rbrack\neq\emptyset\ (1\leq i\lt N)$
- $1\leq Q\leq2\times10 ^ 5$
- $1\leq s _ {x,i}\leq N$且$L _ {s _ {x,i}}\leq s _ {y,i}\leq U _ {s _ {x,i}}\ (1\leq i\leq Q)$
- $1\leq t _ {x,i}\leq N$且$L _ {t _ {x,i}}\leq t _ {y,i}\leq U _ {t _ {x,i}}\ (1\leq i\leq Q)$
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $L _ 1$ $U _ 1$ $L _ 2$ $U _ 2$ $\vdots$ $L _ N$ $U _ N$ $Q$ $s _ {x,1}$ $s _ {y,1}$ $t _ {x,1}$ $t _ {y,1}$ $s _ {x,2}$ $s _ {y,2}$ $t _ {x,2}$ $t _ {y,2}$ $\vdots$ $s _ {x,Q}$ $s _ {y,Q}$ $t _ {x,Q}$ $t _ {y,Q}$
输出
打印$Q$行。 第$i$行$(1\leq i\leq Q)$应包含对第