103683: [Atcoder]ABC368 D - Minimum Steiner Tree
Description
Score : $425$ points
Problem Statement
You are given a tree with $N$ vertices numbered $1$ to $N$. The $i$-th edge connects vertices $A_i$ and $B_i$.
Consider a tree that can be obtained by removing some (possibly zero) edges and vertices from this graph. Find the minimum number of vertices in such a tree that includes all of $K$ specified vertices $V_1,\ldots,V_K$.
Constraints
- $1 \leq K \leq N \leq 2\times 10^5$
- $1 \leq A_i,B_i \leq N$
- $1 \leq V_1 < V_2 < \ldots < V_K \leq N$
- The given graph is a tree.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $B_1$ $\vdots$ $A_{N-1}$ $B_{N-1}$ $V_1$ $\ldots$ $V_K$
Output
Print the answer.
Sample Input 1
7 3 1 2 1 3 2 4 2 5 3 6 3 7 1 3 5
Sample Output 1
4
The given tree is shown on the left in the figure below. The tree with the minimum number of vertices that includes all of vertices $1,3,5$ is shown on the right.
Sample Input 2
4 4 3 1 1 4 2 1 1 2 3 4
Sample Output 2
4
Sample Input 3
5 1 1 4 2 3 5 2 1 2 1
Sample Output 3
1
Output
得分:425分
问题陈述
给你一个有N个顶点的树,顶点编号为1到N。第i条边连接顶点A_i和B_i。
考虑通过从该图中删除一些(可能为零)边和顶点可以获得的一棵树。找到包含所有K个指定顶点V_1,…,V_K的最小顶点数的树。
约束条件
- $1 \leq K \leq N \leq 2\times 10^5$
- $1 \leq A_i,B_i \leq N$
- $1 \leq V_1 < V_2 < \ldots < V_K \leq N$
- 给定的图是一棵树。
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
$N$ $K$ $A_1$ $B_1$ $\vdots$ $A_{N-1}$ $B_{N-1}$ $V_1$ $\ldots$ $V_K$
输出
打印答案。
样本输入1
7 3 1 2 1 3 2 4 2 5 3 6 3 7 1 3 5
样本输出1
4
如下图所示,给定的树在左侧。包含所有顶点1,3,5的最小顶点数的树显示在右侧。
样本输入2
4 4 3 1 1 4 2 1 1 2 3 4
样本输出2
4
样本输入3
5 1 1 4 2 3 5 2 1 2 1
样本输出3
1