103706: [Atcoder]ABC370 G - Divisible by 3
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $650$ points
Problem Statement
We call a positive integer $n$ a good integer if and only if the sum of its positive divisors is divisible by $3$.
You are given two positive integers $N$ and $M$. Find the number, modulo $998244353$, of length-$M$ sequences $A$ of positive integers such that the product of the elements in $A$ is a good integer not exceeding $N$.
Constraints
- $1 \leq N \leq 10^{10}$
- $1 \leq M \leq 10^5$
- $N$ and $M$ are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$
Output
Print the answer.
Sample Input 1
10 1
Sample Output 1
5
There are five sequences that satisfy the conditions:
- $(2)$
- $(5)$
- $(6)$
- $(8)$
- $(10)$
Sample Input 2
4 2
Sample Output 2
2
There are two sequences that satisfy the conditions:
- $(1, 2)$
- $(2, 1)$
Sample Input 3
370 907
Sample Output 3
221764640
Sample Input 4
10000000000 100000
Sample Output 4
447456146
Output
得分:650分
问题陈述
如果且仅当正整数n的所有正约数之和能被3整除,我们称这个正整数n为好整数。
给你两个正整数N和M。找出长度为M的序列A的正整数个数,使得A中元素的乘积是一个不超过N的好整数,结果对998244353取模。
约束条件
- $1 \leq N \leq 10^{10}$
- $1 \leq M \leq 10^5$
- N和M都是整数。
输入
输入从标准输入以下格式给出:
$N$ $M$
输出
打印答案。
示例输入1
10 1
示例输出1
5
有五个序列满足条件:
- $(2)$
- $(5)$
- $(6)$
- $(8)$
- $(10)$
示例输入2
4 2
示例输出2
2
有两个序列满足条件:
- $(1, 2)$
- $(2, 1)$
示例输入3
370 907
示例输出3
221764640
示例输入4
10000000000 100000
示例输出4
447456146