103751: [Atcoder]ABC375 B - Traveling Takahashi Problem
Description
Score : $150$ points
Problem Statement
Takahashi is at the origin on a two-dimensional coordinate plane.
The cost for him to move from point $(a, b)$ to point $(c, d)$ is $\sqrt{(a - c)^2 + (b - d)^2}$.
Find the total cost when he starts at the origin, visits $N$ points $(X_1, Y_1), \ldots, (X_N, Y_N)$ in this order, and then returns to the origin.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $-10^9 \leq X_i, Y_i \leq 10^9$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $X_1$ $Y_1$ $\vdots$ $X_N$ $Y_N$
Output
Print the answer.
Your output will be considered correct if its absolute or relative error from the true value is at most $10^{-6}$.
Sample Input 1
2 1 2 -1 0
Sample Output 1
6.06449510224597979401
The journey consists of the following three steps:
- Move from $(0, 0)$ to $(1, 2)$. The cost is $\sqrt{(0 - 1)^2 + (0 - 2)^2} = \sqrt{5} = 2.236067977...$.
- Move from $(1, 2)$ to $(-1, 0)$. The cost is $\sqrt{(1 - (-1))^2 + (2 - 0)^2} = \sqrt{8} = 2.828427124...$.
- Move from $(-1, 0)$ to $(0, 0)$. The cost is $\sqrt{(-1 - 0)^2 + (0 - 0)^2} = \sqrt{1} = 1$.
The total cost is $6.064495102...$.
Sample Input 2
7 -14142 13562 -17320 50807 -22360 67977 24494 89742 -26457 51311 28284 27124 31622 77660
Sample Output 2
384694.57587932075868509383
Sample Input 3
5 -100000 100000 100000 -100000 -100000 100000 100000 -100000 -100000 100000
Sample Output 3
1414213.56237309504880168872
Output
得分:150分
问题陈述
高桥位于二维坐标平面的原点。
他从点$(a, b)$移动到点$(c, d)$的成本是$\sqrt{(a - c)^2 + (b - d)^2}$。
求他从原点出发,按顺序访问$N$个点$(X_1, Y_1), \ldots, (X_N, Y_N)$,然后返回原点的总成本。
约束条件
- $1 \leq N \leq 2 \times 10^5$
- $-10^9 \leq X_i, Y_i \leq 10^9$
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
$N$ $X_1$ $Y_1$ $\vdots$ $X_N$ $Y_N$
输出
打印答案。
如果您的输出的绝对误差或相对误差与真实值的误差最多为$10^{-6}$,则您的输出将被认为是正确的。
示例输入1
2 1 2 -1 0
示例输出1
6.06449510224597979401
旅程包括以下三个步骤:
- 从$(0, 0)$移动到$(1, 2)$。成本是$\sqrt{(0 - 1)^2 + (0 - 2)^2} = \sqrt{5} = 2.236067977...$。
- 从$(1, 2)$移动到$(-1, 0)$。成本是$\sqrt{(1 - (-1))^2 + (2 - 0)^2} = \sqrt{8} = 2.828427124...$。
- 从$(-1, 0)$移动到$(0, 0)$。成本是$\sqrt{(-1 - 0)^2 + (0 - 0)^2} = \sqrt{1} = 1$。
总成本是$6.064495102...$。
示例输入2
7 -14142 13562 -17320 50807 -22360 67977 24494 89742 -26457 51311 28284 27124 31622 77660
示例输出2
384694.57587932075868509383
示例输入3
5 -100000 100000 100000 -100000 -100000 100000 100000 -100000 -100000 100000
示例输出3
1414213.56237309504880168872
Sample Input Copy
Sample Output Copy