103774: [Atcoder]ABC377 E - Permute K times 2

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:19 Solved:0

Description

Score : $475$ points

Problem Statement

You are given a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$.

The following operation will be performed $K$ times:

  • For $i=1,2,\ldots,N$, simultaneously update $P_i$ to $P_{P_i}$.

Print $P$ after all operations.

Constraints

  • $1\leq N\leq2\times10^5$
  • $1\leq K\leq10^{18}$
  • $1\leq P_i\leq N\ (1\leq i\leq N)$
  • $P_i\neq P_j\ (1\leq i\lt j\leq N)$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $K$
$P_1$ $P_2$ $\ldots$ $P_N$

Output

For the $P$ after all operations, print $P_1,P_2,\ldots,P_N$ in this order, separated by spaces.


Sample Input 1

6 3
5 6 3 1 2 4

Sample Output 1

6 1 3 2 4 5

With each operation, $P$ changes as follows:

  • After the first operation, $P$ is $(2,4,3,5,6,1)$.
  • After the second operation, $P$ is $(4,5,3,6,1,2)$.
  • After the third operation, $P$ is $(6,1,3,2,4,5)$.

Thus, print 6 1 3 2 4 5.


Sample Input 2

5 1000000000000000000
1 2 3 4 5

Sample Output 2

1 2 3 4 5

Since $P_i=i$, $P$ does not change no matter how many operations are performed.


Sample Input 3

29 51912426
7 24 8 23 6 1 4 19 11 18 20 9 17 28 22 27 15 2 12 26 10 13 14 25 5 29 3 21 16

Sample Output 3

18 23 16 24 21 10 2 27 19 7 12 8 13 5 15 26 17 4 3 9 1 22 25 14 28 11 29 6 20

Output

得分:475分

问题陈述

给定一个排列$P=(P_1,P_2,\ldots,P_N)$,其由$(1,2,\ldots,N)$组成。

以下操作将执行$K$次:

  • 对于$i=1,2,\ldots,N$,同时将$P_i$更新为$P_{P_i}$。

打印所有操作后的$P$。

约束条件

  • $1\leq N\leq2\times10^5$
  • $1\leq K\leq10^{18}$
  • $1\leq P_i\leq N\ (1\leq i\leq N)$
  • $P_i\neq P_j\ (1\leq i\lt j\leq N)$
  • 所有输入值都是整数。

输入

输入从标准输入以下格式给出:

$N$ $K$
$P_1$ $P_2$ $\ldots$ $P_N$

输出

对于所有操作后的$P$,按顺序打印$P_1,P_2,\ldots,P_N$,用空格分隔。


示例输入1

6 3
5 6 3 1 2 4

示例输出1

6 1 3 2 4 5

每次操作后,$P$的变化如下:

  • 第一次操作后,$P$为$(2,4,3,5,6,1)$。
  • 第二次操作后,$P$为$(4,5,3,6,1,2)$。
  • 第三次操作后,$P$为$(6,1,3,2,4,5)$。

因此,打印6 1 3 2 4 5


示例输入2

5 1000000000000000000
1 2 3 4 5

示例输出2

1 2 3 4 5

由于$P_i=i$,无论执行多少次操作,$P$都不会改变。


示例输入3

29 51912426
7 24 8 23 6 1 4 19 11 18 20 9 17 28 22 27 15 2 12 26 10 13 14 25 5 29 3 21 16

示例输出3

18 23 16 24 21 10 2 27 19 7 12 8 13 5 15 26 17 4 3 9 1 22 25 14 28 11 29 6 20

加入题单

上一题 下一题 算法标签: