103784: [Atcoder]ABC378 E - Mod Sigma Problem

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:23 Solved:0

Description

Score : $475$ points

Problem Statement

You are given a sequence $A = (A_1, A_2, \dots, A_N)$ of $N$ non-negative integers, and a positive integer $M$.

Find the following value:

\[ \sum_{1 \leq l \leq r \leq N} \left( \left(\sum_{l \leq i \leq r} A_i\right) \mathbin{\mathrm{mod}} M \right). \]

Here, $X \mathbin{\mathrm{mod}} M$ denotes the remainder when the non-negative integer $X$ is divided by $M$.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq M \leq 2 \times 10^5$
  • $0 \leq A_i \leq 10^9$

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $\dots$ $A_N$

Output

Print the answer.


Sample Input 1

3 4
2 5 0

Sample Output 1

10
  • $A_1 \mathbin{\mathrm{mod}} M = 2$
  • $(A_1+A_2) \mathbin{\mathrm{mod}} M = 3$
  • $(A_1+A_2+A_3) \mathbin{\mathrm{mod}} M = 3$
  • $A_2 \mathbin{\mathrm{mod}} M = 1$
  • $(A_2+A_3) \mathbin{\mathrm{mod}} M = 1$
  • $A_3 \mathbin{\mathrm{mod}} M = 0$

The answer is the sum of these values, $10$. Note that the outer sum is not taken modulo $M$.


Sample Input 2

10 100
320 578 244 604 145 839 156 857 556 400

Sample Output 2

2736

Output

得分:475分

问题陈述

给定一个由N个非负整数组成的序列A = (A_1, A_2, …, A_N),以及一个正整数M。

找出以下值:

\[ \sum_{1 \leq l \leq r \leq N} \left( \left(\sum_{l \leq i \leq r} A_i\right) \mathbin{\mathrm{mod}} M \right). \]

这里,X \mathbin{\mathrm{mod}} M 表示非负整数X除以M后的余数。

约束条件

  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq M \leq 2 \times 10^5$
  • $0 \leq A_i \leq 10^9$

输入

输入从标准输入以下格式给出:

$N$ $M$
$A_1$ $A_2$ … $A_N$

输出

打印答案。


示例输入1

3 4
2 5 0

示例输出1

10
  • $A_1 \mathbin{\mathrm{mod}} M = 2$
  • $(A_1+A_2) \mathbin{\mathrm{mod}} M = 3$
  • $(A_1+A_2+A_3) \mathbin{\mathrm{mod}} M = 3$
  • $A_2 \mathbin{\mathrm{mod}} M = 1$
  • $(A_2+A_3) \mathbin{\mathrm{mod}} M = 1$
  • $A_3 \mathbin{\mathrm{mod}} M = 0$

答案是这些值的和,10。注意,外层求和不是对M取模。


示例输入2

10 100
320 578 244 604 145 839 156 857 556 400

示例输出2

2736

加入题单

上一题 下一题 算法标签: