103786: [Atcoder]ABC378 G - Everlasting LIDS
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:2
Solved:0
Description
Score : $650$ points
Problem Statement
You are given integers $A$, $B$, and $M$.
How many permutations $P = (P_1, \dots, P_{AB-1})$ of $(1, 2, \ldots, AB - 1)$ satisfy all of the following conditions? Find the count modulo $M$.
- The length of a longest increasing subsequence of $P$ is $A$.
- The length of a longest decreasing subsequence of $P$ is $B$.
- There exists an integer $n$ such that appending $n + 0.5$ to the end of $P$ does not change either of the lengths of a longest increasing subsequence and a longest decreasing subsequence.
Constraints
- All input values are integers.
- $2 \leq A, B$
- $AB \leq 120$
- $10^8 \leq M \leq 10^9$
- $M$ is a prime.
Input
The input is given from Standard Input in the following format:
$A$ $B$ $M$
Output
Print the number of permutations satisfying the conditions, modulo $M$.
Sample Input 1
3 2 998244353
Sample Output 1
10
For example, $P = (2, 4, 5, 1, 3)$ satisfies the conditions. This can be confirmed as follows:
- The length of a longest increasing subsequence of $P$ is $3$.
- The length of a longest decreasing subsequence of $P$ is $2$.
- For $n = 4$, the lengths of longest increasing and decreasing subsequences of $(2, 4, 5, 1, 3, 4.5)$ are $3$ and $2$, respectively.
There are $10$ permutations of $(1, 2, 3, 4, 5)$ that satisfy the conditions.
Sample Input 2
10 12 924844033
Sample Output 2
623378361
Print the count modulo $M$.
Output
得分:650分
问题陈述
给定整数 $A$,$B$ 和 $M$。
有多少排列 $P = (P_1, \dots, P_{AB-1})$ 满足以下所有条件?请找到模 $M$ 后的计数。
- $P$ 的最长递增子序列的长度是 $A$。
- $P$ 的最长递减子序列的长度是 $B$。
- 存在一个整数 $n$,将 $n + 0.5$ 追加到 $P$ 的末尾不会改变最长递增子序列和最长递减子序列的长度。
约束条件
- 所有输入值都是整数。
- $2 \leq A, B$
- $AB \leq 120$
- $10^8 \leq M \leq 10^9$
- $M$ 是一个质数。
输入
输入从标准输入以下格式给出:
$A$ $B$ $M$
输出
打印满足条件的排列数,模 $M$。
样本输入 1
3 2 998244353
样本输出 1
10
例如,$P = (2, 4, 5, 1, 3)$ 满足条件。这可以按以下方式确认:
- $P$ 的最长递增子序列的长度是 $3$。
- $P$ 的最长递减子序列的长度是 $2$。
- 对于 $n = 4$,$(2, 4, 5, 1, 3, 4.5)$ 的最长递增和递减子序列的长度分别是 $3$ 和 $2$。
有 $10$ 个 $(1, 2, 3, 4, 5)$ 的排列满足条件。
样本输入 2
10 12 924844033
样本输出 2
623378361
打印模 $M$ 后的计数。