1242: NOIP2002:矩形覆盖

Memory Limit:128 MB Time Limit:0 S
Judge Style:Text Compare Creator:
Submit:23 Solved:10

Description

        在平面上有  n  个点(n  < =  50),每个点用一对整数坐标表示。例如:当  n=4  时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7)。

这些点可以用  k  个矩形(1< =k< =4)全部覆盖,矩形的边平行于坐标轴。当  k=2  时,可用如图二的两个矩形  sl,s2  覆盖,s1,s2  面积和为  4。问题是当  n  个点坐标和  k  给出后,怎样才能使得覆盖所有点的  k  个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为  0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

Input

格式为 n  k xl  y1 x2  y2 ...  ... xn  yn  (0< =xi,yi< =500)

Output

一个整数,即满足条件的最小的矩形面积之和。

Sample Input Copy

4 2
1 1
2 2
3 6
0 7

Sample Output Copy

4

HINT

NOIP2002提高组第四题

加入题单

上一题 下一题 算法标签: