201000: [AtCoder]ARC100 C - Linear Approximation
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
Snuke has an integer sequence $A$ of length $N$.
He will freely choose an integer $b$. Here, he will get sad if $A_i$ and $b+i$ are far from each other. More specifically, the sadness of Snuke is calculated as follows:
- $abs(A_1 - (b+1)) + abs(A_2 - (b+2)) + ... + abs(A_N - (b+N))$
Here, $abs(x)$ is a function that returns the absolute value of $x$.
Find the minimum possible sadness of Snuke.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $...$ $A_N$
Output
Print the minimum possible sadness of Snuke.
Sample Input 1
5 2 2 3 5 5
Sample Output 1
2
If we choose $b=0$, the sadness of Snuke would be $abs(2-(0+1))+abs(2-(0+2))+abs(3-(0+3))+abs(5-(0+4))+abs(5-(0+5))=2$. Any choice of $b$ does not make the sadness of Snuke less than $2$, so the answer is $2$.
Sample Input 2
9 1 2 3 4 5 6 7 8 9
Sample Output 2
0
Sample Input 3
6 6 5 4 3 2 1
Sample Output 3
18
Sample Input 4
7 1 1 1 1 2 3 4
Sample Output 4
6