201071: [AtCoder]ARC107 B - Quadruple
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
Given are integers $N$ and $K$. How many quadruples of integers $(a,b,c,d)$ satisfy both of the following conditions?
- $1 \leq a,b,c,d \leq N$
- $a+b-c-d=K$
Constraints
- $1 \leq N \leq 10^5$
- $-2(N-1) \leq K \leq 2(N-1)$
- All numbers in input are integers.
Input
Input is given from standard input in the following format:
$N$ $K$
Output
Print the answer.
Sample Input 1
2 1
Sample Output 1
4
Four quadruples below satisfy the conditions:
- $(a,b,c,d)=(2,1,1,1)$
- $(a,b,c,d)=(1,2,1,1)$
- $(a,b,c,d)=(2,2,2,1)$
- $(a,b,c,d)=(2,2,1,2)$
Sample Input 2
2525 -425
Sample Output 2
10314607400