201133: [AtCoder]ARC113 D - Sky Reflector
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $600$ points
Problem Statement
In a grid with $N$ horizontal rows and $M$ vertical columns of squares, we will write an integer between $1$ and $K$ (inclusive) on each square and define sequences $A, B$ as follows:
- for each $i=1,\dots, N$, $A_i$ is the minimum value written on a square in the $i$-th row;
- for each $j=1,\dots, M$, $B_j$ is the maximum value written on a square in the $j$-th column.
Given $N, M, K$, find the number of different pairs of sequences that can be $(A, B)$, modulo $998244353$.
Constraints
- $1 \leq N,M,K \leq 2\times 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $K$
Output
Print the number of different pairs of sequences that can be $(A, B)$, modulo $998244353$.
Sample Input 1
2 2 2
Sample Output 1
7
$(A_1,A_2,B_1,B_2)$ can be $(1,1,1,1)$, $(1,1,1,2)$, $(1,1,2,1)$, $(1,1,2,2)$, $(1,2,2,2)$, $(2,1,2,2)$, or $(2,2,2,2)$ - there are seven candidates.
Sample Input 2
1 1 100
Sample Output 2
100
Sample Input 3
31415 92653 58979
Sample Output 3
469486242