201162: [AtCoder]ARC116 C - Multiple Sequences
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $500$ points
Problem Statement
Given are integers $N$ and $M$. How many sequences $A$ of $N$ integers satisfy the following conditions?
- $1 \leq A_i \leq M \left(i = 1, 2, \ldots, N\right)$
- $A_{i+1}$ is a multiple of $A_i$. $\left(i = 1, 2, \ldots, N - 1\right)$
Since the answer can be enormous, report it modulo $998244353$.
Constraints
- All values in input are integers.
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq M \leq 2 \times 10^5$
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Print the answer.
Sample Input 1
3 4
Sample Output 1
13
Some of the sequences $A$ satisfying the conditions follow:
- $A = \left(1, 1, 4\right)$
- $A = \left(3, 3, 3\right)$
- $A = \left(1, 2, 4\right)$
Sample Input 2
20 30
Sample Output 2
71166
Sample Input 3
200000 200000
Sample Output 3
835917264