201183: [AtCoder]ARC118 D - Hamiltonian Cycle

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $700$ points

Problem Statement

Given are a prime number $P$ and positive integers $a$ and $b$. Determine whether there is a sequence of $P$ integers, $A = (A_1, A_2, \ldots, A_P)$, satisfying all of the conditions below, and print one such sequence if it exists.

  • $1\leq A_i\leq P - 1$.
  • $A_1 = A_P = 1$.
  • $(A_1, A_2, \ldots, A_{P-1})$ is a permutation of $(1, 2, \ldots, P-1)$.
  • For every $2\leq i\leq P$, at least one of the following holds.
    • $A_{i} \equiv aA_{i-1}\pmod{P}$
    • $A_{i-1} \equiv aA_{i}\pmod{P}$
    • $A_{i} \equiv bA_{i-1}\pmod{P}$
    • $A_{i-1} \equiv bA_{i}\pmod{P}$

Constraints

  • $2\leq P\leq 10^5$
  • $P$ is a prime.
  • $1\leq a, b \leq P - 1$

Input

Input is given from Standard Input in the following format:

$P$ $a$ $b$

Output

If there is an integer sequence $A$ satisfying the conditions, print Yes; otherwise, print No. In the case of Yes, print the elements in your sequence $A$ satisfying the requirement in the next line, with spaces in between.

$A_1$ $A_2$ $\ldots$ $A_P$

If multiple sequences satisfy the requirement, any of them will be accepted.


Sample Input 1

13 4 5

Sample Output 1

Yes
1 5 11 3 12 9 7 4 6 8 2 10 1

This sequence satisfies the conditions, since we have the following modulo $P = 13$:

  • $A_2\equiv 5A_1$
  • $A_2\equiv 4A_3$
  • $\vdots$
  • $A_{13}\equiv 4A_{12}$

Sample Input 2

13 1 2

Sample Output 2

Yes
1 2 4 8 3 6 12 11 9 5 10 7 1

Sample Input 3

13 9 3

Sample Output 3

No

Sample Input 4

13 1 1

Sample Output 4

No

Input

题意翻译

给定质数 $P$ 和两个正整数 $a,b$,要求构造一个长度为 $P$ 的序列满足: - $1\le A_i\le P-1$; - $A_1=A_P=1$; - $(A_1,A_2,\dots,A_{P-1})$ 是一个 $1\sim P-1$ 的排列; - $\forall 2\le i\le P$,满足下列四个条件中的至少一个: 1. $A_i\equiv aA_{i-1}\pmod P$; 2. $A_{i-1}\equiv aA_i\pmod P$; 3. $A_i\equiv bA_{i-1}\pmod P$; 4. $A_{i-1}\equiv bA_i\pmod P$。 $\texttt{Data Range}:2\le P\le 10^5,1\le a,b\le P-1$,$P$ 为质数。 Translated by pitham(脾土蛤蟆)。

加入题单

上一题 下一题 算法标签: