201185: [AtCoder]ARC118 F - Growth Rate
Memory Limit:1024 MB
Time Limit:4 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $1000$ points
Problem Statement
Given is a positive integer $M$ and a sequence of $N$ integers: $A = (A_1,A_2,\ldots,A_N)$. Find the number, modulo $998244353$, of sequences of $N+1$ integers, $X = (X_1,X_2, \ldots, X_{N+1})$, satisfying all of the following conditions:
- $1\leq X_i\leq M$ ($1\leq i\leq N+1$)
- $A_iX_i\leq X_{i+1}$ ($1\leq i\leq N$)
Constraints
- $1\leq N\leq 1000$
- $1\leq M\leq 10^{18}$
- $1\leq A_i\leq 10^9$
- $\prod_{i=1}^N A_i \leq M$
Input
Input is given from Standard Input in the following format:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the number of integer sequences satisfying the conditions, modulo $998244353$.
Sample Input 1
2 10 2 3
Sample Output 1
7
Seven sequences below satisfy the conditions.
- $(1, 2, 6)$, $(1,2,7)$, $(1,2,8)$, $(1,2,9)$, $(1,2,10)$, $(1,3,9)$, $(1,3,10)$
Sample Input 2
2 10 3 2
Sample Output 2
9
Nine sequences below satisfy the conditions.
- $(1, 3, 6)$, $(1, 3, 7)$, $(1, 3, 8)$, $(1, 3, 9)$, $(1, 3, 10)$, $(1, 4, 8)$, $(1, 4, 9)$, $(1, 4, 10)$, $(1, 5, 10)$
Sample Input 3
7 1000 1 2 3 4 3 2 1
Sample Output 3
225650129
Sample Input 4
5 1000000000000000000 1 1 1 1 1
Sample Output 4
307835847