201225: [AtCoder]ARC122 F - Domination
Memory Limit:1024 MB
Time Limit:7 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $1200$ points
Problem Statement
There are $N$ red stones and $M$ blue stones on a two-dimensional plane. The $i$-th red stone is at coordinates $(RX_i,RY_i)$, and the $j$-th blue stone is at $(BX_j,BY_j)$. There may be multiple stones at the same coordinates.
You can choose a blue stone and move it to anywhere you like, any number of times. The cost of moving a blue stone from $(x, y)$ to $(x',y')$ is $|x-x'|+|y-y'|$.
You want to meet the following condition:
- For every $1 \leq i \leq N$, there are $K$ or more blue stones to the upper right of the $i$-th red stone. More formally, there are $K$ or more indices $1 \leq j \leq M$ such that $RX_i \leq BX'_j$ and $RY_i \leq BY'_j$, where $(BX'_j,BY'_j)$ are the coordinates of the $j$-th blue stone after your operations.
Find the minimum total cost needed to achieve your objective.
Constraints
- $1 \leq N \leq 10^5$
- $1 \leq M \leq 10^5$
- $1 \leq K \leq \min(M,10)$
- $0 \leq RX_i,RY_i,BX_j,BY_j \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $K$ $RX_1$ $RY_1$ $RX_2$ $RY_2$ $\vdots$ $RX_N$ $RY_N$ $BX_1$ $BY_1$ $BX_2$ $BY_2$ $\vdots$ $BX_M$ $BY_M$
Output
Print the answer.
Sample Input 1
3 2 1 0 0 2 0 0 2 1 0 0 1
Sample Output 1
2
The optimal moves are as follows.
- Move the first blue stone to $(2,0)$, for the cost of $|1-2|+|0-0|=1$.
- Move the second blue stone to $(0,2)$, for the cost of $|0-0|+|1-2|=1$.
Sample Input 2
3 2 2 0 0 2 0 0 2 1 0 0 1
Sample Output 2
6
The optimal moves are as follows.
- Move the first blue stone to $(2,2)$, for the cost of $|1-2|+|0-2|=3$.
- Move the second blue stone to $(2,2)$, for the cost of $|0-2|+|1-2|=3$.
Sample Input 3
10 10 3 985971569 9592031 934345597 151698665 212173157 492617927 623299445 288193327 381549360 462770084 681791249 242910920 569404932 353061961 357882677 463919940 110389433 533715995 9639432 700209424 771167518 75925290 439954587 566974581 738467799 122646638 267815107 900808287 886340750 70087431 434010239 822484872 388269208 879859813 393002209 874330449 154134229 924857472 667626345 460737380
Sample Output 3
1165266772