201255: [AtCoder]ARC125 F - Tree Degree Subset Sum
Memory Limit:1024 MB
Time Limit:6 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $900$ points
Problem Statement
Given is a tree with $N$ vertices. The vertices are numbered $1$ through $N$, and the $i$-th edge connects Vertex $A_i$ and Vertex $B_i$.
Find the number of pairs of integers $(x,y)$ that satisfy the following conditions.
-
$0 \leq x \leq N$.
-
There is a way to choose exactly $x$ vertices from the tree so that the sum of their degrees equals $y$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq A_i < B_i \leq N$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $\vdots$ $A_{N-1}$ $B_{N-1}$
Output
Print the answer.
Sample Input 1
3 1 2 2 3
Sample Output 1
6
The following six pairs $(x,y)$ satisfy the conditions.
- $x=0,y=0$
- $x=1,y=1$
- $x=1,y=2$
- $x=2,y=2$
- $x=2,y=3$
- $x=3,y=4$
$x=2,y=3$, for example, satisfies the condition because choosing Vertex $1$ and Vertex $2$ achieves the total degree of $3$.
Sample Input 2
5 1 2 2 3 2 4 4 5
Sample Output 2
16
Sample Input 3
10 2 9 8 10 2 10 4 6 5 6 1 8 2 7 3 6 6 8
Sample Output 3
65