201290: [AtCoder]ARC129 A - Smaller XOR

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

Given are integers $N$, $L$, and $R$. Count the number of integers $x$ that satisfy both of the following conditions.

  • $L \leq x \leq R$
  • $(x \oplus N) < N$ (Here, $\oplus$ denotes the bitwise $\mathrm{XOR}$.)
What is the bitwise $\mathrm{XOR}$?

The bitwise $\mathrm{XOR}$ of integers $A$ and $B$, $A\oplus B$, is defined as follows:

  • When $A\oplus B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if exactly one of $A$ and $B$ is $1$, and $0$ otherwise.
For example, we have $3\oplus 5 = 6$ (in base two: $011\oplus 101 = 110$).

Constraints

  • $1 \leq N \leq 10^{18}$
  • $1 \leq L \leq R \leq 10^{18}$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $L$ $R$

Output

Print the answer.


Sample Input 1

2 1 2

Sample Output 1

1

For $x=1$, $L \leq x \leq R$ is satisfied, but $(x \oplus N) < N$ is not. For $x=2$, both conditions are satisfied. There is no other $x$ that satisfies the conditions.


Sample Input 2

10 2 19

Sample Output 2

10

Sample Input 3

1000000000000000000 1 1000000000000000000

Sample Output 3

847078495393153025

Input

题意翻译

给定三个正整数 $N,L,R$,询问满足如下条件的整数 $x$ 的个数: - $L\leq x\leq R$ - $(x \oplus N) < N$ 其中 $\oplus$ 是按位异或运算。

加入题单

上一题 下一题 算法标签: