201294: [AtCoder]ARC129 E - Yet Another Minimization
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $900$ points
Problem Statement
Snuke is making an integer sequence of length $N$: $x=(x_1,x_2,\cdots,x_N)$. For each $i$ ($1 \leq i \leq N$), there are $M$ candidates for the value of $x_i$: the $k$-th of them is $A_{i,k}$. Choosing $A_{i,k}$ incurs a cost of $C_{i,k}$.
Additionally, after deciding $x$, a cost of $|x_i-x_j| \times W_{i,j}$ is incurred for each $i,j$ ($1 \leq i < j \leq N$).
Find the minimum possible total cost incurred.
Constraints
- $2 \leq N \leq 50$
- $2 \leq M \leq 5$
- $1 \leq A_{i,1} < A_{i,2} < \cdots < A_{i,M} \leq 10^6$
- $1 \leq C_{i,k} \leq 10^{15}$
- $1 \leq W_{i,j} \leq 10^6$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $A_{1,1}$ $C_{1,1}$ $A_{1,2}$ $C_{1,2}$ $\vdots$ $A_{1,M}$ $C_{1,M}$ $A_{2,1}$ $C_{2,1}$ $A_{2,2}$ $C_{2,2}$ $\vdots$ $A_{2,M}$ $C_{2,M}$ $\vdots$ $A_{N,1}$ $C_{N,1}$ $A_{N,2}$ $C_{N,2}$ $\vdots$ $A_{N,M}$ $C_{N,M}$ $W_{1,2}$ $W_{1,3}$ $\cdots$ $W_{1,N-1}$ $W_{1,N}$ $W_{2,3}$ $W_{2,4}$ $\cdots$ $W_{2,N}$ $\vdots$ $W_{N-1,N}$
Output
Print the answer.
Sample Input 1
3 2 1 1 5 2 2 3 9 4 7 2 8 2 1 5 3
Sample Output 1
28
An optimal choice is $x=(5,9,7)$. The individual costs incurred here are as follows.
- Choosing $A_{1,2}$ for $x_1$ incurs a cost of $C_{1,2}=2$.
- Choosing $A_{2,2}$ for $x_2$ incurs a cost of $C_{2,2}=4$.
- Choosing $A_{3,1}$ for $x_3$ incurs a cost of $C_{3,1}=2$..
- For $(i,j)=(1,2)$, a cost of $|x_i-x_j| \times W_{i,j}=4$ is incurred.
- For $(i,j)=(1,3)$, a cost of $|x_i-x_j| \times W_{i,j}=10$ is incurred.
- For $(i,j)=(2,3)$, a cost of $|x_i-x_j| \times W_{i,j}=6$ is incurred.
Sample Input 2
10 3 19 2517 38 785 43 3611 3 681 20 758 45 4745 6 913 7 2212 22 536 4 685 27 148 36 2283 25 3304 36 1855 43 2747 11 1976 32 4973 43 3964 3 4242 16 4750 50 24 4 4231 22 1526 31 2152 15 2888 28 2249 49 2208 31 3127 40 3221 47 4671 24 6 16 47 42 50 35 43 47 29 18 28 24 27 25 33 12 5 43 20 9 39 46 30 40 24 34 5 30 21 50 6 21 36 5 50 16 13 13 2 40 15 25 48 20
Sample Output 2
27790
Sample Input 3
2 2 1 1 10 10 1 1 10 10 100
Sample Output 3
2