201303: [AtCoder]ARC130 D - Zigzag Tree

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

Given is a tree with $N$ vertices. The vertices are numbered $1$ to $N$, and the $i$-th edge connects Vertices $a_i$ and $b_i$.

Find the number of sequences of positive integers $P = (P_1, P_2, \ldots, P_N)$ that satisfy the conditions below, modulo $998244353$.

  • $1\leq P_i\leq N$
  • $P_i\neq P_j$ if $i\neq j$.
  • For $1\leq a, b, c\leq N$, if Vertices $a$ and $b$ are adjacent, and Vertices $b$ and $c$ are also adjacent, $P_a < P_b > P_c$ or $P_a > P_b < P_c$ holds.

Constraints

  • $2\leq N\leq 3000$
  • $1\leq a_i, b_i\leq N$
  • The given graph is a tree.

Input

Input is given from Standard Input in the following format:

$N$
$a_1$ $b_1$
$a_2$ $b_2$
$\vdots$
$a_{N-1}$ $b_{N-1}$

Output

Print the answers.


Sample Input 1

3
1 2
2 3

Sample Output 1

4

The $4$ sequences satisfying the conditions are:

  • $P = (1, 3, 2)$
  • $P = (2, 1, 3)$
  • $P = (2, 3, 1)$
  • $P = (3, 1, 2)$

Sample Input 2

4
1 2
1 3
1 4

Sample Output 2

12

Sample Input 3

6
1 2
2 3
3 4
4 5
5 6

Sample Output 3

122

Sample Input 4

9
8 5
9 8
1 9
2 5
6 1
7 6
3 8
4 1

Sample Output 4

19080

Input

题意翻译

有一个 $n$ 个点的树,编号为 $1\sim n$,第 $i$ 条边连接 $a_i$ 和 $b_i$。 找出 $1\sim n$ 的排列 $p$ 的个数,满足对于任意 $1\le a,b,c\le n$,其中点 $a$ 和点 $b$ 相邻,点 $b$ 和点 $c$ 相邻,都有 $p_a<p_b>p_c$ 或 $p_a>p_b<p_c$。 对 $998244353$ 取模。

加入题单

上一题 下一题 算法标签: