201392: [AtCoder]ARC139 C - One Three Nine
Description
Score : $700$ points
Problem Statement
You are given positive integers $N$ and $M$.
Let us call a sequence of pairs of integers $((X_1,Y_1),(X_2,Y_2),\dots,(X_K,Y_K))$ wonderful when it satisfies the following.
- $1 \le X_i \le N$
- $1 \le Y_i \le M$
- $X_i+3Y_i \neq X_j+3Y_j$ and $3X_i+Y_i \neq 3X_j+Y_j$, if $i \neq j$.
Make a wonderful sequence of pairs of integers whose length, $K$, is the maximum possible.
Constraints
- $1 \le N,M \le 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Print your answer in the following format:
$K$ $X_1$ $Y_1$ $X_2$ $Y_2$ $\vdots$ $X_K$ $Y_K$
Here, $K$ should be the maximum possible length of a wonderful sequence of pairs of integers, and $((X_1,Y_1),(X_2,Y_2),\dots,(X_K,Y_K))$ should be a wonderful sequence of pairs of integers. If multiple solutions exist, printing any of them is accepted.
Sample Input 1
3 4
Sample Output 1
10 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 3 4
For $N=3, M=4$, there is no wonderful sequence of pairs of integers whose length is $11$ or longer, and the above sequence of pairs of integers is wonderful, so this output is valid.