201414: [AtCoder]ARC141 E - Sliding Edge on Torus

Memory Limit:1024 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $700$ points

Problem Statement

There is an undirected graph with $N^2$ vertices. Initially, it has no edges. For each pair of integers $(i,\ j)$ such that $0 \leq i,\ j < N$, the graph has a corresponding vertex called $(i,\ j)$.

You will get $Q$ queries, which should be processed in order. The $i$-th query, which gives you four integers $a_i,\ b_i,\ c_i,\ d_i$, is as follows.

  • For each $k$ $(0 \leq k < N)$, add an edge between two vertices $((a_i+k) \bmod N,\ (b_i+k) \bmod N)$ and $((c_i+k) \bmod N,\ (d_i+k) \bmod N)$. Then, print the current number of connected components in the graph.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq Q \leq 2 \times 10^5$
  • $0 \leq a_i,\ b_i,\ c_i,\ d_i < N$
  • $(a_i,\ b_i) \neq (c_i,\ d_i)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $Q$
$a_1$ $b_1$ $c_1$ $d_1$
$a_2$ $b_2$ $c_2$ $d_2$
$\vdots$
$a_Q$ $b_Q$ $c_Q$ $d_Q$

Output

Print $Q$ lines. The $i$-th line should contain the number of connected components in the graph at the $i$-th query.


Sample Input 1

3 3
0 0 1 2
2 0 0 0
1 1 2 2

Sample Output 1

6
4
4

The first query adds an edge between $(0,\ 0),\ (1,\ 2)$, between $(1,\ 1),\ (2,\ 0)$, and between $(2,\ 2),\ (0,\ 1)$, changing the number of connected components from $9$ to $6$.


Sample Input 2

4 3
0 0 2 2
2 3 1 2
1 1 3 3

Sample Output 2

14
11
11

The graph after queries may not be simple.


Sample Input 3

6 5
0 0 1 1
1 2 3 4
1 1 5 3
2 0 1 5
5 0 3 3

Sample Output 3

31
27
21
21
19

Input

题意翻译

你有一张包含 $n^2$ 个节点的图,每个节点用二元组 $(i,j)$ 表示($0\le i<n$,$0\le j<n$),初始时没有边。 你需要依次进行 $q$ 次操作,每次操作给定四个参数 $a,b,c,d$,对于每个 $0\le k<n$,你会在节点 $((a+k)\bmod n,(b+k)\bmod n)$ 和 $((c+k)\bmod n,(d+k)\bmod n)$ 之间连一条无向边。 请你计算每次操作后这张图的连通块数量。

加入题单

上一题 下一题 算法标签: