201472: [AtCoder]ARC147 C - Min Diff Sum
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $600$ points
Problem Statement
$N$ people, numbered $1,2,\ldots ,N$, are going to stand on the number line. Let's denote by $x_i$ the coordinate the Person $i$ stands at. Then, $x_i$ should be an integer satisfying $L_i \leq x_i \leq R_i$. Multiple people can occupy the same coordinate.
We define the dissatisfaction level as the following formula:
$\displaystyle\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}|x_j-x_i|$
Find the minimum possible value of the dissatisfaction level.
Constraints
- $2 \leq N \leq 3 \times 10^5$
- $1 \leq L_i \leq R_i \leq 10^7 \,(1 \leq i \leq N)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $L_1$ $R_1$ $L_2$ $R_2$ $\vdots$ $L_N$ $R_N$
Output
Print the answer.
Sample Input 1
3 1 3 2 4 5 6
Sample Output 1
4
If we let $x_1=3,x_2=4,x_3=5$, we get the dissatisfaction level of $4$. We cannot make it $3$ or less, so the answer is $4$.
Sample Input 2
3 1 1 1 1 1 1
Sample Output 2
0
Sample Input 3
6 1 5 2 4 1 1 4 4 3 6 3 3
Sample Output 3
15