201475: [AtCoder]ARC147 F - Again ABC String
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $1100$ points
Problem Statement
Consider strings of length $N$ consisting of A
, B
, and C
.
Among them, find the number of strings that satisfy the following condition, modulo $2$:
- Let $S_i$ be the string formed by the first $i$ characters of $S$.
Also let $A_i$, $B_i$, and $C_i$ be the numbers of
A
's,B
's, andC
's in $S_i$, respectively. For all $i$ such that $1 \le i \le N$, the following holds:- $A_i-B_i \le X$
- $B_i-C_i \le Y$
- $C_i-A_i \le Z$
You have $T$ test cases to solve.
Constraints
- $1 \le T \le 10$
- $1 \le N \le 10^9$
- $0 \le X,Y,Z \le 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$T$ $\mathrm{case}_1$ $\mathrm{case}_2$ $\vdots$ $\mathrm{case}_T$
Each case is in the following format:
$N$ $X$ $Y$ $Z$
Output
For each case, print the answer.
Sample Input 1
1 3 2 1 0
Sample Output 1
0
$8$ strings satisfy the condition: AAB
,AAC
,ABA
,ABC
,ACA
,ACB
,BAA
,BAC
.
Therefore the answer is $0$.
Sample Input 2
10 1 22 9 92 14 7 74 39 23 50 8 6 93 40 9 60 68 8 47 64 11 68 18 24 3 26 54 8 46 17 90 86 86 76 45 55 80 68 79 62
Sample Output 2
1 0 0 0 1 1 1 0 1 0