201501: [AtCoder]ARC150 B - Make Divisible
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $500$ points
Problem Statement
You are given positive integers $A$ and $B$.
Find the minimum value of $X+Y$ for non-negative integers $X$ and $Y$ such that $B+Y$ is a multiple of $A+X$.
You have $T$ test cases to solve.
Constraints
- $1 \leq T \leq 100$
- $1 \leq A,\ B \leq 10^9$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$T$ $\mathrm{case}_{1}$ $\mathrm{case}_{2}$ $\vdots$ $\mathrm{case}_{T}$
Each case is in the following format:
$A$ $B$
Output
Print $T$ lines. The $i$-th line should contain the answer for the $i$-th test case.
Sample Input 1
5 11 23 8 16 4394 993298361 95392025 569922442 8399283 10293
Sample Output 1
2 0 65 2429708 8388990
For the first test case, if we let $X=1$ and $Y=1$, then $B+Y=24$ will be a multiple of $A+X=12$. Here, we have $X+Y=2$, and there is no way to make $X+Y$ smaller, so the answer is $2$.
For the second test case, if we let $X=0$ and $Y=0$, then $B+Y=16$ will be a multiple of $A+X=8$.