201511: [AtCoder]ARC151 B - A < AP

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

You are given a permutation $P = (P_1, P_2, \ldots, P_N)$ of $(1, 2, \ldots, N)$.

Print the number of integer sequences $A = (A_1, A_2, \ldots, A_N)$ of length $N$ that satisfy both of the conditions below, modulo $998244353$.

  • $1 \leq A_i \leq M$ for every $i = 1, 2, \ldots, N$.
  • The integer sequence $A$ is lexicographically smaller than the integer sequence $(A_{P_1}, A_{P_2}, \ldots, A_{P_N})$.
What is lexicographical order?

An integer sequence $X = (X_1,X_2,\ldots,X_N)$ is lexicographically smaller than an integer sequence $Y = (Y_1,Y_2,\ldots,Y_N)$ when there is an integer $1 \leq i \leq N$ that satisfies both of the conditions below.

  • For all integers $j$ ($1 \leq j \leq i-1$), $X_j=Y_j$.
  • $X_i < Y_i$

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq M \leq 10^9$
  • $1 \leq P_i \leq N$
  • $i \neq j \implies P_i \neq P_j$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$P_1$ $P_2$ $\ldots$ $P_N$

Output

Print the number of integer sequences $A$ of length $N$ that satisfy both of the conditions in the Problem Statement, modulo $998244353$.


Sample Input 1

4 2
4 1 3 2

Sample Output 1

6

Six integer sequences $A$ satisfy both of the conditions: $(1, 1, 1, 2)$, $(1, 1, 2, 2)$, $(1, 2, 1, 2)$, $(1, 2, 2, 2)$, $(2, 1, 1, 2)$, and $(2, 1, 2, 2)$.
For instance, when $A = (1, 1, 1, 2)$, we have $(A_{P_1}, A_{P_2}, A_{P_3}, A_{P_4}) = (2, 1, 1, 1)$, which is lexicographically larger than $A$.


Sample Input 2

1 1
1

Sample Output 2

0

Sample Input 3

20 100000
11 15 3 20 17 6 1 9 5 19 10 16 7 8 12 2 18 14 4 13

Sample Output 3

55365742

Input

题意翻译

### Description 给定一个 $1\sim N$ 的排列 $P$,找到符合以下条件的 $A$ 数组的数量 $\bmod 998244353$。 - 对于 $1\sim N$ 的每一个 $i$,$1\le A_i\le M$。 - $A$ 数组字典序小于 $(A_{P_1},A_{P_2},\cdots,A_{P_n})$ 数组。

加入题单

上一题 下一题 算法标签: