201513: [AtCoder]ARC151 D - Binary Representations and Queries

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $700$ points

Problem Statement

You are given an integer sequence $A = (A_0, A_1, \ldots, A_{2^N-1})$ of length $2^N$.

Additionally, $Q$ queries are given. For each $i = 1, 2, \ldots, Q$, the $i$-th query is represented by two integers $X_i$ and $Y_i$ and asks you to perform the operation below.

For each $j = 0, 1, 2, \ldots, 2^N-1$ in this order, do the following.

  1. First, let $b_{N-1}b_{N-2}\ldots b_0$ be the binary representation of $j$ with $N$ digits. Additionally, let $j'$ be the integer represented by the binary representation $b_{N-1}b_{N-2}\ldots b_0$ after flipping the bit $b_{X_i}$ (changing $0$ to $1$ and $1$ to $0$).
  2. Then, if $b_{X_i} = Y_i$, add the value of $A_j$ to $A_{j'}$.

Print each element of $A$, modulo $998244353$, after processing all the queries in the order they are given in the input.

What is binary representation with $N$ digits?

The binary representation of an non-negative integer $X$ ($0 \leq X < 2^N$) with $N$ digits is the unique sequence $b_{N-1}b_{N-2}\ldots b_0$ of length $N$ consisting of $0$ and $1$ that satisfies:

  • $\sum_{i = 0}^{N-1} b_i \cdot 2^i = X$.

Constraints

  • $1 \leq N \leq 18$
  • $1 \leq Q \leq 2 \times 10^5$
  • $0 \leq A_i \lt 998244353$
  • $0 \leq X_i \leq N-1$
  • $Y_i \in \lbrace 0, 1\rbrace$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $Q$
$A_0$ $A_1$ $\ldots$ $A_{2^N-1}$
$X_1$ $Y_1$
$X_2$ $Y_2$
$\vdots$
$X_Q$ $Y_Q$

Output

For each $i = 0, 1, \ldots, 2^N-1$, print the remainder $A'_i$ when dividing $A_i$ after processing all the queries by $998244353$, separated by spaces, in the following format:

$A'_0$ $A'_1$ $\ldots$ $A'_{2^N-1}$

Sample Input 1

2 2
0 1 2 3
1 1
0 0

Sample Output 1

2 6 2 5

The first query asks you to do the following.

  • For $j = 0$, we have $b_1b_0 = 00$ and $j' = 2$. Since $b_1 \neq 1$, skip the addition.
  • For $j = 1$, we have $b_1b_0 = 01$ and $j' = 3$. Since $b_1 \neq 1$, skip the addition.
  • For $j = 2$, we have $b_1b_0 = 10$ and $j' = 0$. Since $b_1 = 1$, add the value of $A_2$ to $A_0$. Now we have $A = (2, 1, 2, 3)$.
  • For $j = 3$, we have $b_1b_0 = 11$ and $j' = 1$. Since $b_1 = 1$, add the value of $A_3$ to $A_1$. Now we have $A = (2, 4, 2, 3)$.

The second query asks you to do the following.

  • For $j = 0$, we have $b_1b_0 = 00$ and $j' = 1$. Since $b_0 = 0$, add the value of $A_0$ to $A_1$. Now we have $A = (2, 6, 2, 3)$.
  • For $j = 1$, we have $b_1b_0 = 01$ and $j' = 0$. Since $b_0 \neq 0$, skip the addition.
  • For $j = 2$, we have $b_1b_0 = 10$ and $j' = 3$. Since $b_0 = 0$, add the value of $A_2$ to $A_3$. Now we have $A = (2, 6, 2, 5)$.
  • For $j = 3$, we have $b_1b_0 = 11$ and $j' = 2$. Since $b_0 \neq 0$, skip the addition.

Thus, $A$ will be $(2, 6, 2, 5)$ after processing all the queries.


Sample Input 2

3 10
606248357 338306877 919152167 981537317 808873985 845549408 680941783 921035119
1 1
0 0
0 0
0 0
0 1
0 1
0 1
2 0
2 0
2 0

Sample Output 2

246895115 904824001 157201385 744260759 973709546 964549010 61683812 205420980

Input

题意翻译

给定一个整数 $n$ 和一个长度为 $2^n-1$ 的序列 $A$(下标从 0 开始)。你需要按顺序执行 $Q$ 次操作,每次操作内容如下: - 给定两个整数 $X,Y$,若整数 $i\in [0,2^n)$ 满足它的二进制第 $X$ 位(位数从 0 开始)为 $Y$,设 $i$ 翻转第 $X$ 位后的值为 $i'$,则让 $A_{i'}$ 的值加上 $A_i$。 所有操作执行完后,请输出整个序列 $A$。 $1\le N\le 18,\ 1\le Q\le 2\times 10^5,\ 0\le X\le N-1,\ Y\in \{0,1\}$。

加入题单

上一题 下一题 算法标签: