201544: [AtCoder]ARC154 E - Reverse and Inversion
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $900$ points
Problem Statement
For a permutation $Q=(Q_1,Q_2,\dots,Q_N)$ of $(1,2,\dots,N)$, let $f(Q)$ be the following value:
the sum of $j-i$ over all pairs of integers $(i,j)$ such that $1 \le i < j \le N$ and $Q_i > Q_j$.
You are given a permutation $P=(P_1,P_2,\dots,P_N)$ of $(1,2,\dots,N)$.
Let us repeat the following operation $M$ times.
- Choose a pair of integers $(i,j)$ such that $1 \le i \le j \le N$. Reverse $P_i,P_{i+1},\dots,P_j$. Formally, replace the values of $P_i,P_{i+1},\dots,P_j$ with $P_j,P_{j-1},\dots,P_i$ simultaneously.
There are $\left(\frac{N(N+1)}{2}\right)^{M}$ ways to repeat the operation. Assume that we have computed $f(P)$ for all those ways.
Find the sum of these $\left(\frac{N(N+1)}{2}\right)^{M}$ values, modulo $998244353$.
Constraints
- $1 \le N,M \le 2 \times 10^5$
- $(P_1,P_2,\dots,P_N)$ is a permutation of $(1,2,\dots,N)$.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $P_1$ $P_2$ $\dots$ $P_N$
Output
Print a single line containing the answer.
Sample Input 1
2 1 1 2
Sample Output 1
1
There are three ways to perform the operation, as follows.
- Choose $(i,j)=(1,1)$, making $P=(1,2)$, where $f(P)=0$.
- Choose $(i,j)=(1,2)$, making $P=(2,1)$, where $f(P)=1$.
- Choose $(i,j)=(2,2)$, making $P=(1,2)$, where $f(P)=0$.
Thus, the answer is $0+1+0=1$.
Sample Input 2
3 2 3 2 1
Sample Output 2
90
Sample Input 3
10 2023 5 8 1 9 3 10 4 7 2 6
Sample Output 3
543960046