201552: [AtCoder]ARC155 C - Even Sum Triplet
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $700$ points
Problem Statement
You are given integer sequences of length $N$: $A=(A_1, A_2, \dots, A_N)$ and $B=(B_1, B_2, \dots, B_N)$.
You may perform the following operation any number of times:
- Choose an integer $i\ (1 \leq i \leq N-2)$ such that $A_i+A_{i+1}+A_{i+2}$ is even. Then, rearrange $A_i$, $A_{i+1}$, $A_{i+2}$ as you like.
Determine whether it is possible to make $A$ equal $B$.
Constraints
- $3 \leq N \leq 2 \times 10^5$
- $1 \leq A_i, B_i \leq 2 \times 10^5$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\dots$ $A_N$ $B_1$ $B_2$ $\dots$ $B_N$
Output
If it is possible to make $A$ equal $B$, print Yes
; otherwise, print No
.
Sample Input 1
5 1 2 3 4 5 3 1 2 4 5
Sample Output 1
Yes
$A_1+A_2+A_3$ is $1+2+3=6$, which is even, so you can choose $i=1$.
If you choose $i=1$ and rearrange $A_1, A_2, A_3$ into $A_3, A_1, A_2$, then $A$ becomes $(3, 1, 2, 4, 5)$.
Now $A$ equals $B$, so you should print Yes
.
Sample Input 2
5 1 2 4 6 5 5 1 4 2 6
Sample Output 2
No
Sample Input 3
9 2 10 4 3 6 2 6 8 5 2 4 10 3 8 6 6 2 5
Sample Output 3
Yes