300634: CF120J. Minimum Sum
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Minimum Sum
题意翻译
- **本题需文件操作**,从 `input.txt` 读入,输出到 `output.txt`。 - 给出 $n$ 个向量。 - 对于任意一个向量 $v_i=(x_i,y_i)$,你可以使之变成一下之一: - $v_i^1 = (x_i, y_i)$ - $v_i^2=(-x_i, y_i)$ - $v_i^3=(x_i,-y_i)$ - $v_i^4=(-x_i,-y_i)$ - 你需要找到一组 $1\le i, j \le n, i\neq j, 1\le k_1,k_2\le 4$ 使得 $|v_i^{k_1}+v_j^{k_2}|$ 最小。其中 $|a|$ 为向量 $a$ 的模长。题目描述
You are given a set of $ n $ vectors on a plane. For each vector you are allowed to multiply any of its coordinates by -1. Thus, each vector $ v_{i}=(x_{i},y_{i}) $ can be transformed into one of the following four vectors: - $ v_{i}^{1}=(x_{i},y_{i}) $ , - $ v_{i}^{2}=(-x_{i},y_{i}) $ , - $ v_{i}^{3}=(x_{i},-y_{i}) $ , - $ v_{i}^{4}=(-x_{i},-y_{i}) $ . You should find two vectors from the set and determine which of their coordinates should be multiplied by -1 so that the absolute value of the sum of the resulting vectors was minimally possible. More formally, you should choose two vectors $ v_{i} $ , $ v_{j} $ ( $ 1<=i,j<=n,i≠j $ ) and two numbers $ k_{1} $ , $ k_{2} $ ( $ 1<=k_{1},k_{2}<=4 $ ), so that the value of the expression $ |v_{i}^{k_{1}}+v_{j}^{k_{2}}| $ were minimum.输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 2<=n<=10^{5} $ ). Then $ n $ lines contain vectors as pairs of integers " $ x_{i} $ $ y_{i} $ " ( $ -10000<=x_{i},y_{i}<=10000 $ ), one pair per line.
输出格式
Print on the first line four space-separated numbers " $ i $ $ k_{1} $ $ j $ $ k_{2} $ " — the answer to the problem. If there are several variants the absolute value of whose sums is minimum, you can print any of them.
输入输出样例
输入样例 #1
5
-7 -3
9 0
-8 6
7 -8
4 -5
输出样例 #1
3 2 4 2
输入样例 #2
5
3 2
-4 7
-6 0
-8 4
5 1
输出样例 #2
3 4 5 4