301035: CF195E. Building Forest

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Building Forest

题目描述

An oriented weighted forest is an acyclic weighted digraph in which from each vertex at most one edge goes. The root of vertex $ v $ of an oriented weighted forest is a vertex from which no edge goes and which can be reached from vertex $ v $ moving along the edges of the weighted oriented forest. We denote the root of vertex $ v $ as $ root(v) $ . The depth of vertex $ v $ is the sum of weights of paths passing from the vertex $ v $ to its root. Let's denote the depth of the vertex $ v $ as $ depth(v) $ . Let's consider the process of constructing a weighted directed forest. Initially, the forest does not contain vertices. Vertices are added sequentially one by one. Overall, there are $ n $ performed operations of adding. The $ i $ -th $ (i>0) $ adding operation is described by a set of numbers $ (k,v_{1},x_{1},v_{2},x_{2},...\ ,v_{k},x_{k}) $ and means that we should add vertex number $ i $ and $ k $ edges to the graph: an edge from vertex $ root(v_{1}) $ to vertex $ i $ with weight $ depth(v_{1})+x_{1} $ , an edge from vertex $ root(v_{2}) $ to vertex $ i $ with weight $ depth(v_{2})+x_{2} $ and so on. If $ k=0 $ , then only vertex $ i $ is added to the graph, there are no added edges. Your task is like this: given the operations of adding vertices, calculate the sum of the weights of all edges of the forest, resulting after the application of all defined operations, modulo $ 1000000007 $ $ (10^{9}+7) $ .

输入输出格式

输入格式


The first line contains a single integer $ n $ $ (1<=n<=10^{5}) $ — the number of operations of adding a vertex. Next $ n $ lines contain descriptions of the operations, the $ i $ -th line contains the description of the operation of adding the $ i $ -th vertex in the following format: the first number of a line is an integer $ k $ $ (0<=k<=i-1) $ , then follow $ 2k $ space-separated integers: $ v_{1},x_{1},v_{2},x_{2},...\ ,v_{k},x_{k} $ $ (1<=v_{j}<=i-1,|x_{j}|<=10^{9}) $ . The operations are given in the order, in which they should be applied to the graph. It is guaranteed that sum $ k $ of all operations does not exceed $ 10^{5} $ , also that applying operations of adding vertexes does not result in loops and multiple edges.

输出格式


Print a single number — the sum of weights of all edges of the resulting graph modulo $ 1000000007 $ $ (10^{9}+7) $ .

输入输出样例

输入样例 #1

6
0
0
1 2 1
2 1 5 2 2
1 1 2
1 3 4

输出样例 #1

30

输入样例 #2

5
0
1 1 5
0
0
2 3 1 4 3

输出样例 #2

9

说明

Conside the first sample: 1. Vertex $ 1 $ is added. $ k=0 $ , thus no edges are added. 2. Vertex $ 2 $ is added. $ k=0 $ , thus no edges are added. 3. Vertex $ 3 $ is added. $ k=1 $ . $ v_{1}=2 $ , $ x_{1}=1 $ . Edge from vertex $ root(2)=2 $ to vertex $ 3 $ with weight $ depth(2)+x_{1}=0+1=1 $ is added. 4. Vertex $ 4 $ is added. $ k=2 $ . $ v_{1}=1 $ , $ x_{1}=5 $ . Edge from vertex $ root(1)=1 $ to vertex $ 4 $ with weight $ depth(1)+x_{1}=0+5=5 $ is added. $ v_{2}=2 $ , $ x_{2}=2 $ . Edge from vertex $ root(2)=3 $ to vertex $ 4 $ with weight $ depth(2)+x_{1}=1+2=3 $ is added. 5. Vertex $ 5 $ is added. $ k=1 $ . $ v_{1}=1 $ , $ x_{1}=2 $ . Edge from vertex $ root(1)=4 $ to vertex $ 5 $ with weight $ depth(1)+x_{1}=5+2=7 $ is added. 6. Vertex $ 6 $ is added. $ k=1 $ . $ v_{1}=3 $ , $ x_{1}=4 $ . Edge from vertex $ root(3)=5 $ to vertex $ 6 $ with weight $ depth(3)+x_{1}=10+4=14 $ is added. The resulting graph is shown on the pictore below: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF195E/4cd819006eedb2e0b56b3506191b428b68b12cbe.png)

Input

加入题单

算法标签: