301188: CF222B. Cosmic Tables

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Cosmic Tables

题意翻译

## 题目描述 给定一个 $n\times m$ 的矩阵与 $k$ 次操作,每次操作有以下三种类别: - 交换第 $x_i$ 列与第 $y_i$ 列; - 交换第 $x_i$ 行与第 $y_i$ 行; - 查询位于第 $x_i$ 行第 $y_i$ 列的数。 ## 输入格式 输入的第一行有三个整数 $n,m,k$ ( $1\le n,m\le 10^3$ , $1\le k\le 10^5$),分别表示该矩阵的行数、列数与操作个数。 接下来 $k$ 行,每行输入一个字符 $s_i$ ( $s_i$ 只会是 "c","r","g" 中的一个 ) 与两个整数 $x_i,y_i$ ( $1\le x_i\le n,y_i\le m$ )。 - 若 $s_i$ 为 "c",则交换第 $x_i$ 列与第 $y_i$ 列 ( 保证 $x_i \ne y_i$ ); - 若 $s_i$ 为 "r",则交换第 $x_i$ 行与第 $y_i$ 行 ( 保证 $x_i \ne y_i$ ); - 若 $s_i$ 为 "g",则查询此时位于第 $x_i$ 行第 $y_i$ 列的数。 ## 输出格式 对于每个 $s_i=$ "g",输出查询的结果。 Translated by $\operatorname{Rosmarinus}$.

题目描述

The Free Meteor Association (FMA) has got a problem: as meteors are moving, the Universal Cosmic Descriptive Humorous Program (UCDHP) needs to add a special module that would analyze this movement. UCDHP stores some secret information about meteors as an $ n×m $ table with integers in its cells. The order of meteors in the Universe is changing. That's why the main UCDHP module receives the following queries: - The query to swap two table rows; - The query to swap two table columns; - The query to obtain a secret number in a particular table cell. As the main UCDHP module is critical, writing the functional of working with the table has been commissioned to you.

输入输出格式

输入格式


The first line contains three space-separated integers $ n $ , $ m $ and $ k $ ( $ 1<=n,m<=1000 $ , $ 1<=k<=500000 $ ) — the number of table columns and rows and the number of queries, correspondingly. Next $ n $ lines contain $ m $ space-separated numbers each — the initial state of the table. Each number $ p $ in the table is an integer and satisfies the inequality $ 0<=p<=10^{6} $ . Next $ k $ lines contain queries in the format " $ s_{i} $ $ x_{i} $ $ y_{i} $ ", where $ s_{i} $ is one of the characters "с", "r" or "g", and $ x_{i} $ , $ y_{i} $ are two integers. - If $ s_{i} $ = "c", then the current query is the query to swap columns with indexes $ x_{i} $ and $ y_{i} $ ( $ 1<=x,y<=m,x≠y $ ); - If $ s_{i} $ = "r", then the current query is the query to swap rows with indexes $ x_{i} $ and $ y_{i} $ ( $ 1<=x,y<=n,x≠y $ ); - If $ s_{i} $ = "g", then the current query is the query to obtain the number that located in the $ x_{i} $ -th row and in the $ y_{i} $ -th column ( $ 1<=x<=n,1<=y<=m $ ). The table rows are considered to be indexed from top to bottom from 1 to $ n $ , and the table columns — from left to right from 1 to $ m $ .

输出格式


For each query to obtain a number ( $ s_{i} $ = "g") print the required number. Print the answers to the queries in the order of the queries in the input.

输入输出样例

输入样例 #1

3 3 5
1 2 3
4 5 6
7 8 9
g 3 2
r 3 2
c 2 3
g 2 2
g 3 2

输出样例 #1

8
9
6

输入样例 #2

2 3 3
1 2 4
3 1 5
c 2 1
r 1 2
g 1 3

输出样例 #2

5

说明

Let's see how the table changes in the second test case. After the first operation is fulfilled, the table looks like that: 2 1 4 1 3 5 After the second operation is fulfilled, the table looks like that: 1 3 5 2 1 4 So the answer to the third query (the number located in the first row and in the third column) will be 5.

Input

题意翻译

## 题目描述 给定一个 $n\times m$ 的矩阵与 $k$ 次操作,每次操作有以下三种类别: - 交换第 $x_i$ 列与第 $y_i$ 列; - 交换第 $x_i$ 行与第 $y_i$ 行; - 查询位于第 $x_i$ 行第 $y_i$ 列的数。 ## 输入格式 输入的第一行有三个整数 $n,m,k$ ( $1\le n,m\le 10^3$ , $1\le k\le 10^5$),分别表示该矩阵的行数、列数与操作个数。 接下来 $k$ 行,每行输入一个字符 $s_i$ ( $s_i$ 只会是 "c","r","g" 中的一个 ) 与两个整数 $x_i,y_i$ ( $1\le x_i\le n,y_i\le m$ )。 - 若 $s_i$ 为 "c",则交换第 $x_i$ 列与第 $y_i$ 列 ( 保证 $x_i \ne y_i$ ); - 若 $s_i$ 为 "r",则交换第 $x_i$ 行与第 $y_i$ 行 ( 保证 $x_i \ne y_i$ ); - 若 $s_i$ 为 "g",则查询此时位于第 $x_i$ 行第 $y_i$ 列的数。 ## 输出格式 对于每个 $s_i=$ "g",输出查询的结果。 Translated by $\operatorname{Rosmarinus}$.

加入题单

上一题 下一题 算法标签: