301261: CF236B. Easy Number Challenge
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:1
Solved:0
Description
Easy Number Challenge
题意翻译
给定 $\text{a, b, c}$ 三个数,$d_i$ 表示 $\text{i}$ 的因子的个数。求 $\sum^{a}_{i=1} \sum^{b}_{j=1} \sum^{c}_{k=1} d \left(i \cdot j \cdot k \right)$ 的值。结果对1073741824 ( $2^{30}$ )取模。题目描述
Let's denote $ d(n) $ as the number of divisors of a positive integer $ n $ . You are given three integers $ a $ , $ b $ and $ c $ . Your task is to calculate the following sum: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF236B/6b4d9893ce96bd0459ff1289a8bf3491052ac12a.png)Find the sum modulo $ 1073741824 $ $ (2^{30}) $ .输入输出格式
输入格式
The first line contains three space-separated integers $ a $ , $ b $ and $ c $ ( $ 1<=a,b,c<=100 $ ).
输出格式
Print a single integer — the required sum modulo $ 1073741824 $ $ (2^{30}) $ .
输入输出样例
输入样例 #1
2 2 2
输出样例 #1
20
输入样例 #2
5 6 7
输出样例 #2
1520