301612: CF305C. Ivan and Powers of Two
Memory Limit:256 MB
Time Limit:0 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Ivan and Powers of Two
题意翻译
有一个由 $n$ 个非负整数组成的序列 $a_1$ 到 $a_n$,这个序列保证单调不降。接着,小华将上述序列作为2的次幂,写下了另一个序列:2的 $a_1$ 次幂到2的 $a_n$ 次幂。 现在他想知道,最少要在这个序列中添加多少个形式为 $2^x$ 的数($x$ 为非负整数),才能使这个序列所有整数的和为 $2^v-1$,其中 $v$ 为某个非负整数。题目描述
Ivan has got an array of $ n $ non-negative integers $ a_{1},a_{2},...,a_{n} $ . Ivan knows that the array is sorted in the non-decreasing order. Ivan wrote out integers $ 2^{a_{1}},2^{a_{2}},...,2^{a_{n}} $ on a piece of paper. Now he wonders, what minimum number of integers of form $ 2^{b} $ $ (b>=0) $ need to be added to the piece of paper so that the sum of all integers written on the paper equalled $ 2^{v}-1 $ for some integer $ v $ $ (v>=0) $ . Help Ivan, find the required quantity of numbers.输入输出格式
输入格式
The first line contains integer $ n $ ( $ 1<=n<=10^{5} $ ). The second input line contains $ n $ space-separated integers $ a_{1},a_{2},...,a_{n} $ $ (0<=a_{i}<=2·10^{9}) $ . It is guaranteed that $ a_{1}<=a_{2}<=...<=a_{n} $ .
输出格式
Print a single integer — the answer to the problem.
输入输出样例
输入样例 #1
4
0 1 1 1
输出样例 #1
0
输入样例 #2
1
3
输出样例 #2
3