302796: CF542C. Idempotent functions
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Idempotent functions
题意翻译
给定一个定义域为 $[1,n]$ 的函数 $f(x)$ ,并告诉你 $f(1),f(2)\dots f(n-1),f(n)$,定义 $f^{(k)}(x)=f(f^{(k-1)}(x))$ 。求一个最小的 $k$ 使得 $\forall x \in [1,n]$ ,都有 $f^{(k)}(f^{(k)}(x))=f^{(k)}(x)$ 。 第一行输入一个正整数 $n(1\le n\le 200)$ ,第二行 $n$ 个正整数表示 $f(i)(1\le f(i)\le n)$ 。题目描述
Some time ago Leonid have known about idempotent functions. Idempotent function defined on a set $ {1,2,...,n} $ is such function ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF542C/bd89689373264189cd84dae0d69467be68ca323b.png), that for any ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF542C/9a41c8470dbaa5967772aedda0040717aaf30fea.png) the formula $ g(g(x))=g(x) $ holds. Let's denote as $ f^{(k)}(x) $ the function $ f $ applied $ k $ times to the value $ x $ . More formally, $ f^{(1)}(x)=f(x) $ , $ f^{(k)}(x)=f(f^{(k-1)}(x)) $ for each $ k>1 $ . You are given some function ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF542C/7ed3c9bd96ebefaf9c2ae2aa09921c0d35366e17.png). Your task is to find minimum positive integer $ k $ such that function $ f^{(k)}(x) $ is idempotent.输入输出格式
输入格式
In the first line of the input there is a single integer $ n $ ( $ 1<=n<=200 $ ) — the size of function $ f $ domain. In the second line follow $ f(1),f(2),...,f(n) $ ( $ 1<=f(i)<=n $ for each $ 1<=i<=n $ ), the values of a function.
输出格式
Output minimum $ k $ such that function $ f^{(k)}(x) $ is idempotent.
输入输出样例
输入样例 #1
4
1 2 2 4
输出样例 #1
1
输入样例 #2
3
2 3 3
输出样例 #2
2
输入样例 #3
3
2 3 1
输出样例 #3
3