303001: CF584B. Kolya and Tanya
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Kolya and Tanya
题意翻译
题目大意:给出n个等边三角形,每个顶点都可以是1~3中的一个数,一个等边三角形三个顶点的总和不能是6。在n个三角形中只要有一个等边三角形满足条件,当前情况就是合法的,问有多少种合法的情况。、 感谢@_UKE自动机_ 提供翻译题目描述
Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle. More formally, there are $ 3n $ gnomes sitting in a circle. Each gnome can have from $ 1 $ to $ 3 $ coins. Let's number the places in the order they occur in the circle by numbers from $ 0 $ to $ 3n-1 $ , let the gnome sitting on the $ i $ -th place have $ a_{i} $ coins. If there is an integer $ i $ ( $ 0<=i<n $ ) such that $ a_{i}+a_{i+n}+a_{i+2n}≠6 $ , then Tanya is satisfied. Count the number of ways to choose $ a_{i} $ so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo $ 10^{9}+7 $ . Two ways, $ a $ and $ b $ , are considered distinct if there is index $ i $ ( $ 0<=i<3n $ ), such that $ a_{i}≠b_{i} $ (that is, some gnome got different number of coins in these two ways).输入输出格式
输入格式
A single line contains number $ n $ ( $ 1<=n<=10^{5} $ ) — the number of the gnomes divided by three.
输出格式
Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo $ 10^{9}+7 $ .
输入输出样例
输入样例 #1
1
输出样例 #1
20
输入样例 #2
2
输出样例 #2
680