303018: CF587B. Duff in Beach

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Duff in Beach

题意翻译

### 题目翻译 给出一个长度为$n$的序列$a_0,a_1,...,a_{n-1}$,通过它构造出一个长度为$l$的序列$b_0,b_1,...,b_{l-1}$满足$b_i = a_{i \mod n}$。 现求满足如下条件的$b$的子序列$b_{q_0} , b_{q_1},...,b_{q_{x-1}}$的数量: 1、$1 \leq x \leq k$ 2、$\forall i \in [0,x-2] , \lfloor\frac{q_i}{n} \rfloor = \lfloor \frac{q_{i+1}}{n} \rfloor -1$ 3、$\forall i \in [0,x-2] , b_{q_i} \leq b_{q_{i+1}}$ ### 输入格式 第一行三个正整数 $n,l,k$($n k \leq 10^6$,$l \leq {10}^{18}$)。 接下来一行 $n$ 个正整数 $a_i$($a_i \leq {10}^9$)描述序列。 ### 输出格式 一行一个正整数表示答案模$10^9+7$。

题目描述

While Duff was resting in the beach, she accidentally found a strange array $ b_{0},b_{1},...,b_{l-1} $ consisting of $ l $ positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array, $ a_{0},...,a_{n-1} $ that $ b $ can be build from $ a $ with formula: $ b_{i}=a_{i\ mod\ n} $ where $ a\ mod\ b $ denoted the remainder of dividing $ a $ by $ b $ . ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/d1dab0189dcbc30fd0c5c324e09a0d006de15eb1.png)Duff is so curious, she wants to know the number of subsequences of $ b $ like $ b_{i1},b_{i2},...,b_{ix} $ ( $ 0<=i_{1}&lt;i_{2}&lt;...&lt;i_{x}&lt;l $ ), such that: - $ 1<=x<=k $ - For each $ 1<=j<=x-1 $ , ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/cb3c5f7763e5efc5420c0e7bfb01544f757066d7.png) - For each $ 1<=j<=x-1 $ , $ b_{ij}<=b_{ij+1} $ . i.e this subsequence is non-decreasing. Since this number can be very large, she want to know it modulo $ 10^{9}+7 $ . Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.

输入输出格式

输入格式


The first line of input contains three integers, $ n,l $ and $ k $ ( $ 1<=n,k $ , $ n×k<=10^{6} $ and $ 1<=l<=10^{18} $ ). The second line contains $ n $ space separated integers, $ a_{0},a_{1},...,a_{n-1} $ ( $ 1<=a_{i}<=10^{9} $ for each $ 0<=i<=n-1 $ ).

输出格式


Print the answer modulo $ 1000000007 $ in one line.

输入输出样例

输入样例 #1

3 5 3
5 9 1

输出样例 #1

10

输入样例 #2

5 10 3
1 2 3 4 5

输出样例 #2

25

说明

In the first sample case, ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/e203c59fa4514192459985b0817cae7e512099c6.png). So all such sequences are: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/00e4e91cd4a594888eedcd67c9e69d4094a90345.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/cdd3e3d0d956421d5d8cd2838632f4e3cd7d0af4.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/7f7b139a743d7ce88b395499128708f29bfdf0b9.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/12393dcd04e9e0850ef671f96dabfb383ce97878.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/4b220af8de32b09043405b2bd6363ded2eefca0f.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/e21e90924631a3c49468ec23e21216d6442c4e0f.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/6ae4c31a3e68cdea3eb504c050a788cbffe73451.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/acccff29063f66eddd3e6f721a68b757f796bd6c.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/e585e51cc52e2383c99bfb65a5a7624c6504daec.png) and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF587B/e6fec459092699e6d49d21a0eeaa5fa149558d1c.png).

Input

题意翻译

### 题目翻译 给出一个长度为$n$的序列$a_0,a_1,...,a_{n-1}$,通过它构造出一个长度为$l$的序列$b_0,b_1,...,b_{l-1}$满足$b_i = a_{i \mod n}$。 现求满足如下条件的$b$的子序列$b_{q_0} , b_{q_1},...,b_{q_{x-1}}$的数量: 1、$1 \leq x \leq k$ 2、$\forall i \in [0,x-2] , \lfloor\frac{q_i}{n} \rfloor = \lfloor \frac{q_{i+1}}{n} \rfloor -1$ 3、$\forall i \in [0,x-2] , b_{q_i} \leq b_{q_{i+1}}$ ### 输入格式 第一行三个正整数 $n,l,k$($n k \leq 10^6$,$l \leq {10}^{18}$)。 接下来一行 $n$ 个正整数 $a_i$($a_i \leq {10}^9$)描述序列。 ### 输出格式 一行一个正整数表示答案模$10^9+7$。

加入题单

上一题 下一题 算法标签: