303441: CF666D. Chain Reaction

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Chain Reaction

题意翻译

给定平面直角坐标系中的**四个整点**,问是否存在四个整数坐标,满足: 第 $1$ 个点能够仅通过竖直**或者**水平移动到达第 $1$ 个坐标(也就是说横坐标或者纵坐标相同),第 $2, 3, 4$ 个点类似。 且这四个新的整数坐标形成了面积非负的正方形的四个顶点(也就是说不能重合)。 且这个正方形的边必须平行于坐标轴(不是斜着的)。 如果存在这样的四个坐标,则尽量最小化对应点移动的距离的最大值。 (形式化地说,假设第 $i$ 个点移动的距离为 $d_i$,你需要最小化 $\max\limits_{i=1}^{4} d_i$) 如果不存在这样的坐标,输出 `-1`。 否则输出最小化的 $\max\limits_{i=1}^{4} d_i$,以及那四个坐标。 有 $t$ 组询问。

题目描述

Group of Berland scientists, with whom you have a close business relationship, makes a research in the area of peaceful nuclear energy. In particular, they found that a group of four nanobots, placed on a surface of a plate, can run a powerful chain reaction under certain conditions. To be precise, researchers introduced a rectangular Cartesian coordinate system on a flat plate and selected four distinct points with integer coordinates where bots will be placed initially. Next each bot will be assigned with one of the four directions (up, down, left or right) parallel to the coordinate axes. After that, each bot is shifted by an integer distance (which may be different for different bots) along its direction. The chain reaction starts, if the bots are in the corners of a square with positive area with sides parallel to the coordinate axes. Each corner of the square must contain one nanobot. This reaction will be stronger, if bots spend less time to move. We can assume that bots move with unit speed. In other words, the lesser is the maximum length traveled by bot, the stronger is reaction. Scientists have prepared a set of plates and selected starting position for the bots for each plate. Now they ask you to assign the direction for each bot to move after landing such that the maximum length traveled by bot is as small as possible.

输入输出格式

输入格式


The first line contains an integer number $ t $ ( $ 1<=t<=50 $ ) — the number of plates. $ t $ descriptions of plates follow. A description of each plate consists of four lines. Each line consists of a pair of integers numbers $ x_{i},y_{i} $ ( $ -10^{8}<=x_{i},y_{i}<=10^{8} $ ) — coordinates of the next bot. All bots are in different locations. Note, though, the problem can include several records in one test, you can hack other people's submissions only with the test of one plate, i.e. parameter $ t $ in a hack test should be equal to $ 1 $ .

输出格式


Print answers for all plates separately. First goes a single integer number in a separate line. If scientists have made an unfortunate mistake and nanobots are not able to form the desired square, print -1. Otherwise, print the minimum possible length of the longest bot's path. If a solution exists, in the next four lines print two integer numbers — positions of each bot after moving. Print bots' positions in the order they are specified in the input data. If there are multiple solution, you can print any of them.

输入输出样例

输入样例 #1

2
1 1
1 -1
-1 1
-1 -1
1 1
2 2
4 4
6 6

输出样例 #1

0
1 1
1 -1
-1 1
-1 -1
-1

Input

题意翻译

给定平面直角坐标系中的**四个整点**,问是否存在四个整数坐标,满足: 第 $1$ 个点能够仅通过竖直**或者**水平移动到达第 $1$ 个坐标(也就是说横坐标或者纵坐标相同),第 $2, 3, 4$ 个点类似。 且这四个新的整数坐标形成了面积非负的正方形的四个顶点(也就是说不能重合)。 且这个正方形的边必须平行于坐标轴(不是斜着的)。 如果存在这样的四个坐标,则尽量最小化对应点移动的距离的最大值。 (形式化地说,假设第 $i$ 个点移动的距离为 $d_i$,你需要最小化 $\max\limits_{i=1}^{4} d_i$) 如果不存在这样的坐标,输出 `-1`。 否则输出最小化的 $\max\limits_{i=1}^{4} d_i$,以及那四个坐标。 有 $t$ 组询问。

加入题单

上一题 下一题 算法标签: