303565: CF689E. Mike and Geometry Problem

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Mike and Geometry Problem

题意翻译

数轴上有 n 条线段,每条线段的端点为 $ l_i $ , $ r_i $。 众所周知,在 n 条线段中取 k 条线段有 $ n \choose k $ 即 $ C_n^k $ 种方案,现在每种方案的贡献为这 k 条线段交集包含的整点个数(即交集那条线段的长度 +1),求所有方案的贡献和mod 1e9+7。 感谢@nantf 提供的翻译

题目描述

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define $ f([l,r])=r-l+1 $ to be the number of integer points in the segment $ [l,r] $ with $ l<=r $ (say that ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF689E/eeb8344fc6181df63840b4617c77d0b7d8f368f7.png)). You are given two integers $ n $ and $ k $ and $ n $ closed intervals $ [l_{i},r_{i}] $ on $ OX $ axis and you have to find: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF689E/babb2cf528ef0c11f1d2962e2d5be706b0377f3a.png)In other words, you should find the sum of the number of integer points in the intersection of any $ k $ of the segments. As the answer may be very large, output it modulo $ 1000000007 $ ( $ 10^{9}+7 $ ). Mike can't solve this problem so he needs your help. You will help him, won't you?

输入输出格式

输入格式


The first line contains two integers $ n $ and $ k $ ( $ 1<=k<=n<=200000 $ ) — the number of segments and the number of segments in intersection groups respectively. Then $ n $ lines follow, the $ i $ -th line contains two integers $ l_{i},r_{i} $ $ (-10^{9}<=l_{i}<=r_{i}<=10^{9}) $ , describing $ i $ -th segment bounds.

输出格式


Print one integer number — the answer to Mike's problem modulo $ 1000000007 $ ( $ 10^{9}+7 $ ) in the only line.

输入输出样例

输入样例 #1

3 2
1 2
1 3
2 3

输出样例 #1

5

输入样例 #2

3 3
1 3
1 3
1 3

输出样例 #2

3

输入样例 #3

3 1
1 2
2 3
3 4

输出样例 #3

6

说明

In the first example: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF689E/7f9f6f2b3fe972c0968e2bbe39c55090c69a5e96.png); ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF689E/0c85a7c8eabbf8ea75307cc85322cc7194a52b51.png); ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF689E/05a4f7cd13ee1be29210f871f739a0914a5c363f.png). So the answer is $ 2+1+2=5 $ .

Input

题意翻译

数轴上有 n 条线段,每条线段的端点为 $ l_i $ , $ r_i $。 众所周知,在 n 条线段中取 k 条线段有 $ n \choose k $ 即 $ C_n^k $ 种方案,现在每种方案的贡献为这 k 条线段交集包含的整点个数(即交集那条线段的长度 +1),求所有方案的贡献和mod 1e9+7。 感谢@nantf 提供的翻译

加入题单

上一题 下一题 算法标签: