303777: CF730D. Running Over The Bridges
Memory Limit:512 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Running Over The Bridges
题意翻译
有 $n$ 座桥梁排在一起,每座桥的长度为 $l_i$,现有一个人要跑过这 $n$ 座桥,他只能在第 $i$ 个桥上 $t_i$ 秒,他的初始速度是 $0.5$,但是他有无穷多瓶魔液,喝后可以在后 $r$ 秒中速度为 $1$,他可以在任意整数时刻喝魔液。 求他跑过这些桥至少需要多少瓶魔液及他需要在第几秒喝魔液。按时间顺序输出。若有多种答案,可以输出任意一种。 如果无解,输出 $-1$。题目描述
Polycarp is playing a game called "Running Over The Bridges". In this game he has to run over $ n $ bridges from the left to the right. Bridges are arranged one after the other, so the $ i $ -th bridge begins where the $ (i-1) $ -th bridge ends. You have the following data about bridges: $ l_{i} $ and $ t_{i} $ — the length of the $ i $ -th bridge and the maximum allowed time which Polycarp can spend running over the $ i $ -th bridge. Thus, if Polycarp is in the beginning of the bridge $ i $ at the time $ T $ then he has to leave it at the time $ T+t_{i} $ or earlier. It is allowed to reach the right end of a bridge exactly at the time $ T+t_{i} $ . Polycarp can run from the left side to the right one with speed $ 0.5 $ , so he will run over a bridge with length $ s $ in time $ 2·s $ . Besides, he has several magical drinks. If he uses one drink, his speed increases twice (i.e. to value 1) for $ r $ seconds. All magical drinks are identical. Please note that Polycarp can use a drink only at integer moments of time, and he drinks it instantly and completely. Additionally, if Polycarp uses a drink at the moment $ T $ he can use the next drink not earlier than at the moment $ T+r $ . What is the minimal number of drinks Polycarp has to use to run over all $ n $ bridges? If this number is not greater than $ 10^{5} $ , then you have to find out the moments of time when Polycarp has to use each magical drink.输入输出格式
输入格式
The first line contains two integers $ n $ and $ r $ ( $ 1<=n<=2·10^{5} $ , $ 1<=r<=10^{12} $ ) — the number of bridges and the duration of the effect of a magical drink. The second line contains a sequence of integers $ l_{1},l_{2},...,l_{n} $ ( $ 1<=l_{i}<=5·10^{6} $ ), where $ l_{i} $ is equal to the length of the $ i $ -th bridge. The third line contains a sequence of integers $ t_{1},t_{2},...,t_{n} $ ( $ 1<=t_{i}<=10^{7} $ ), where $ t_{i} $ is equal to the maximum allowed time which Polycarp can spend running over the $ i $ -th bridge.
输出格式
The first line of the output should contain $ k $ — the minimal number of drinks which Polycarp has to use, or -1 if there is no solution. If the solution exists and the value of $ k $ is not greater than $ 10^{5} $ then output $ k $ integers on the next line — moments of time from beginning of the game when Polycarp has to use drinks. Print the moments of time in chronological order. If there are several solutions, you can output any of them.
输入输出样例
输入样例 #1
1 3
7
10
输出样例 #1
2
0 3
输入样例 #2
3 3
3 3 3
3 3 2
输出样例 #2
-1
输入样例 #3
3 100000
5 5 5
5 7 8
输出样例 #3
1
0
输入样例 #4
4 1000
1 2 3 4
10 9 10 9
输出样例 #4
0